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Abstract1

1. Despite the routine nature of estimating overlapping space use in ecological research,2

to date no formal inferential framework for home range overlap has been available3

to ecologists. Part of this issue is due to the inherent difficulty of comparing the4

estimated home ranges that underpin overlap across individuals, studies, sites,5

species, and times. Because overlap is calculated conditionally on a pair of home6

range estimates, biases in these estimates will propagate into biases in overlap7

estimates. Further compounding the issue of comparability in home range estimators8

is the historical lack of confidence intervals on overlap estimates. This means that9

it is not currently possible to determine if a set of overlap values are statistically10

different from one another.11

2. As a solution, we develop the first rigorous inferential framework for home range12

overlap. Our framework is based on the AKDE family of home range estimators,13

which correct for biases due to autocorrelation, small effective sample size, and14

irregular sampling in time. Collectively, these advances allow AKDE estimates to15

validly be compared even when sampling strategies differ. We then couple the16

AKDE estimates with a novel bias-corrected Bhattacharyya Coefficient (BC)17

to quantify overlap. Finally, we propagate uncertainty in the AKDE estimates18

through to overlap, and thus are able to put confidence intervals on the BC point19

estimate.20

3. Using simulated data, we demonstrate how our inferential framework provides21

accurate overlap estimates, and reasonable coverage of the true overlap, even22

at small sample sizes. When applied to empirical data, we found that building23

an interaction network for Mongolian gazelles (Procapra gutturosa) based on all24

possible ties, versus only those ties with statistical support, substantially influenced25

the network’s properties and any potential biological inferences derived from it.26

4. Our inferential framework permits researchers to calculate overlap estimates that27
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can validly be compared across studies, sites, species, and times, and test whether28

observed differences are statistically meaningful. This method is available via the29

R package ctmm.30

31

Keywords: Animal movement, Bhattacharyya Coefficient, AKDE, KDE, Kernel Density32

Estimate, Autocorrelation, ctmm33
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Introduction34

Ecologists have long been interested in patterns and drivers of animal space use (Burt,35

1943; Brown & Orians, 1970; Jetz, 2004). Decisions on what areas to occupy can influence36

fitness through a wide range of pathways such as foraging efficiency (Mitchell & Powell,37

2012) or predator-prey dynamics (Mitchell & Lima, 2002), and even drive evolutionary38

trajectories (Lukas & Clutton-Brock, 2013). Related to this is the question of overlapping39

space use between individuals and/or populations. Quantifying overlap can provide an40

informative metric for testing hypotheses on inter-specific competition (Berger & Gese,41

2007), territoriality (Grant et al., 1992), and mating systems (Powell, 1979). Furthermore,42

overlap can be used to underpin analyses of social network structure (Frère et al., 2010),43

and contact rates, with implications for disease transmission (Sanchez & Hudgens, 2015;44

Dougherty et al., 2018). Trends in overlapping space use are also routinely used in45

determining allometric scaling laws (Grant et al., 1992; Jetz, 2004). The rapid increase46

in both the availability and quality of tracking data in recent years (Kays et al., 2015)47

has made the concept of home range (HR) overlap increasingly relevant. Ecologists are48

now in a position to address overlap-related questions for a larger number of species49

and individuals, in more ecosystems, and with more accurate data than ever before.50

Despite these advances, a formal inferential framework for HR overlap is still51

lacking. Overlap is typically quantified by first estimating HRs from tracking data,52

and then applying an overlap metric to the range estimates (Millspaugh et al., 2004;53

Fieberg & Kochanny, 2005). A wide range of overlap metrics have been proposed in54

the literature, spanning the gamut from ad hoc indices to more formal measures. These55

different metrics have contrasting properties and can produce highly different overlap56

estimates on the same data (see Millspaugh et al., 2004; Fieberg & Kochanny, 2005).57

Further compounding this problem is the inherent difficulty of comparing the estimated58

HRs that underpin overlap across studies, sites, species, and times (Fleming & Calabrese,59

2017). There is broad agreement in the literature that HR estimates based on different60

sampling strategies are difficult to compare, as they may be exposed to different degrees61
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of bias (Frair et al., 2010; Fieberg & Börger, 2012; Fleming et al., 2018). More subtly,62

even identical sampling strategies can still produce differentially biased HR estimates63

if the underlying parameters of movement differ among individuals in the comparison64

(Fleming & Calabrese, 2017). Because overlap is calculated conditionally on a pair of65

HR estimates, biases in the HR estimates will propagate into biases in overlap estimates66

(Fieberg & Kochanny, 2005). It follows then that differential biases in HR estimates67

among different groups of interest will tend to propagate into differential biases in overlap68

estimates, rendering comparisons difficult to interpret and potentially unreliable.69

Additionally, none of the overlap metrics of which we are aware come equipped70

with confidence intervals to quantify the uncertainty in the estimates. This means that71

it is currently not possible to determine if a set of overlap values are statistically different72

from one another, or from a reference value of interest. To see this, consider a case73

where one wishes to compare two overlap estimates from two pairs of individuals: 0.3574

and 0.55. If the 95% confidence intervals for each estimate are disjoint, then we may75

conclude that the two pairs have significantly different measures of overlap. If, on the76

other hand, the 95% confidence intervals are not disjoint, then the point estimates may77

not be significantly different. In other words, without confidence intervals, one cannot78

properly interpret differences between estimates (Pawitan, 2001).79

Here, we develop the first inferential framework for HR overlap by building on80

previous work in quantifying overlap (Fieberg & Kochanny, 2005) and by leveraging81

recent advances in HR estimation (Fleming et al., 2015a; Fleming & Calabrese, 2017;82

Fleming et al., 2018). We base our approach on the Bhattacharyya Coefficient (BC;83

Bhattacharyya, 1943, also called the Bhattacharyya Affinity), which has a formal basis84

as a measure of similarity between two probability distributions, and is straightforward85

to calculate, and interpret (Fieberg & Kochanny, 2005). We couple the BC with autocorrelated-Kernel86

Density Estimation (AKDE) as a general HR estimator (Fleming & Calabrese, 2017).87

Basing overlap estimation on AKDE has two primary advantages. First, AKDE corrects88

for bias due to autocorrelation (Fleming et al., 2015a), ordinary small-sample-size bias89
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(Fleming & Calabrese, 2017), and temporal sampling bias (Fleming et al., 2018). The90

net result is that AKDE HR estimates can validly be compared across studies, sites,91

species, and times, even when sampling strategies and underlying movement parameters92

differ (Fleming & Calabrese, 2017; Fleming et al., 2018, Noonan et al. under review).93

Second, the error propagation techniques used to develop confidence intervals on AKDE94

area estimates (Fleming & Calabrese, 2017) can be extended to overlap estimation,95

allowing us to develop confidence intervals for overlap estimates. In addition, overlap96

estimates can exhibit negative bias (Fieberg & Kochanny, 2005), where part of this97

problem is the result of small-sample-size bias in the BC (Djouadi & Snorrason, 1990).98

As a solution, we derive an approximate, first order bias correction to the BC.99

We use a combination of simulated and empirical data to demonstrate the power100

of our inferential framework. First, based on simulations, we study the bias in BC estimates101

as a function of the amount of autocorrelation in the data and of the effective sample102

size, both in cases where the underlying HR estimators account for these biases (AKDE),103

and where they do not (conventional KDE; Worton, 1989). We use a similar approach104

to quantify the realized coverage of our confidence intervals. We then show how our105

framework can be used to accurately estimate overlap, even when individuals exhibited106

different movement strategies and/or were subject to completely different sampling107

designs, whereas conventional methods fail. Finally, we show how our approach can108

be used in ‘downstream’ applications that depend on overlap. Specifically, we build109

an interaction network (Wey et al., 2008) for Mongolian gazelles (Procapra gutturosa)110

where edges are established only between individuals whose overlap estimates received111

statistical support.112

Methods113

Our inferential framework consists of bias-corrected HR estimates, a bias-corrected BC114

estimator, and confidence intervals on the BC point estimate. We describe each of these115

elements in turn. We then describe how our framework can be used in practice via the116
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ctmm R package by extending the workflow for HR analysis described in Calabrese et al.117

(2016), or through the web based graphical user interface at ctmm.shinyapps.io/ctmmweb/118

(Dong et al., 2017).119

Home range estimation120

At a minimum, calculating overlap requires a pair of HR estimates (Millspaugh et al.,121

2004; Fieberg & Kochanny, 2005). More generally, comparisons of overlap among different122

groups, species, places or times may also be of interest. Nonetheless, as overlap estimates123

are conditional on estimated HRs, those underlying HR estimates must be directly124

comparable across the different groups the researcher wishes to evaluate. Unfortunately,125

HR estimates are subject to a number of biases, and differences in either sampling schedule,126

underlying movement parameters, or both can expose different datasets to different127

degrees of bias (Fieberg & Börger, 2012; Fleming & Calabrese, 2017). Datasets characterized128

by one of more of these forms of bias, which are the norm in practice, can thus render129

comparison of HR estimates across groups of interest highly misleading. The propagation130

of differentially biased HR estimates into differentially biased overlap estimates has131

been a key impediment to the development of a reliable inferential framework for HR132

overlap.133

In decreasing order of importance, the three main sources of bias in HR estimation134

are unmodeled autocorrelation (Fleming et al., 2015a), small effective sample sizes (Fleming135

& Calabrese, 2017), and temporally biased sampling (Fleming et al., 2018). The magnitude136

of the negative bias in HR estimates that results from assuming the data are Independent137

and Identically Distributed (IID) when, in fact, they are autocorrelated can be arbitrarily138

large (Fleming & Calabrese, 2017). All else being equal, the bias will increase with139

the strength of autocorrelation in the data. In contrast, small sample size bias will be140

estimator-specific, and will tend to be of smaller magnitude than autocorrelation-related141

bias for modern GPS data. For example, KDEs based on the conventional Gaussian142

Reference Function (GRF) approximation tend to overestimate HR areas at small sample143

size (Fleming & Calabrese, 2017). Temporally biased sampling occurs when some times144

7



are oversampled while others are under-sampled (Frair et al., 2010), which can produce145

data that are not representative of the individual’s space use (Fleming et al., 2018).146

Bias due to non-representative sampling in time will tend to increase with the degree of147

unevenness in the sampling schedule.148

These three sources of bias must be mitigated to validly compare HR estimates,149

and, by extension, to validly compare overlap estimates. We now describe HR estimation150

methods that, when used in combination, largely corrects these biases. Autocorrelated-KDE151

is a generalization of the GRF-KDE (Fleming et al., 2015a). The core advance in AKDE152

is that the optimization of the smoothing bandwidth, σB , explicitly accounts for autocorrelation153

in the data. Specifically, an autocorrelated movement model is used to represent the154

autocorrelation structure of the data in the bandwidth optimization (Fleming et al.,155

2014c, 2015b). Model selection (detailed below) can be used to arrive at an appropriate156

model for the data (Calabrese et al., 2016). When the data exhibit no autocorrelation,157

the IID model would be selected, and AKDE conditional on the IID model is exactly158

equivalent to the well known GRF-KDE. Recently, Fleming & Calabrese (2017) derived159

a small-sample-size, area-based correction that mitigates the tendency of KDEs based160

on the GRF approximation, including AKDE, to over-smooth the data. Finally, (Fleming161

et al., 2018) developed an optimal weighting scheme, termed ‘wAKDE’, that leverages162

the autocorrelation structure of the data to appropriately up-weight under-sampled163

times and down-weight over-sampled times. When used in concert, these innovations164

result in more accurate HR estimates that are directly comparable across groups of165

interest. A technical introduction to these estimators is provided in Appendix A.1.166

The Bhattacharyya Coefficient (BC)167

There are many different measures which quantify the relative similarity (overlap) or168

dissimilarity (distance) of two probability distributions. While both types of metrics169

can be used to describe the degree of shared space use between individuals, measures of170

overlap are used more commonly in biological contexts than measures of distance (but171

see Kranstauber et al., 2016). In their comparative analysis of overlap metrics, Fieberg172
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& Kochanny (2005) concluded that the BC, and Volume of Intersection statistic (VI;173

also known as the overlap coefficient; Inman & Bradley Jr, 1989) were the most robust174

overlap estimators. While these two valid choices exist, we suggest that, for inferential175

purposes, an overlap estimator should satisfy the following criteria:176

i) Statistical validity An appropriate overlap estimator should be based on an177

established measure of statistical distance or divergence that satisfies related mathematical178

properties.179

ii) Geometric interpretability For uniform distributions, overlap should be proportional180

to the area of intersection.181

iii) Objectivity Overlap should not depend on ad hoc parameters such as particular182

isopleths (e.g., 95% or 50%), or discretized distributions.183

iv) Computational efficiency Computing the overlap of two distributions should184

scale efficiently with the sample size and extent of both distributions.185

v) Asymptotic consistency An overlap estimator should converge to the true overlap186

in the large sample size limit.187

vi) Minimal bias An overlap estimator should have good small sample size behavior.188

vii) Quantifiable uncertainty Overlap is an estimate derived from data and should189

be accompanied by a measure of the confidence in that estimate (Pawitan, 2001).190

The BC (Bhattacharyya, 1943) is a solid basis for inference on HR overlap because191

it satisfies criteria i-v, and has the additional benefit of being well known to the ecological192

community (Fieberg & Kochanny, 2005). Although the VI also meets these criteria193

(Fieberg & Kochanny, 2005), approximating confidence intervals on the VI for the case194

of unequal variances presents severe difficulties (Reiser & Faraggi, 1999). Consequently,195

we base our approach on the BC. The BC between two continuous distributions p1 and196

p2 is given by197
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BC(p1, p2) =

∫ +∞

−∞

∫ +∞

−∞

√
p1(x, y) p2(x, y) dx dy. (1)198

199

The BC is thus a function of the product of the two distributions, ranging from 0 ≤200

BC ≤ 1, with BC = 0 only when p1 and p2 have no shared support and BC = 1 only201

when p1 = p2. We now turn our attention to criteria vi and vii and derive a confidence202

interval approximation, and bias correction that allow the BC to satisfy these additional203

criteria.204

Confidence intervals for the BC205

When measuring the overlap of two HRs, the BC, as given above, is a point estimate of206

the overlap between the two distributions, but does not capture any of our uncertainty207

in the HR estimation procedure. To address this limitation, we derive confidence intervals208

for the BC, in the Gaussian reference function (GRF) approximation. AKDE’s first209

step involves fitting stochastic movement models (Fleming et al., 2015a) to estimate210

the mean and covariance parameters211

µ = 〈r(t)〉 , σ = COV[r(t), r(t)] , (2)212
213

where r(t) = (x(t), y(t)) denotes the individual’s location. In the GRF approximation,214

the individual spatial density estimates are given by215

p(r) =
e−

1
2 (r−µ)Tσ−1(r−µ)√

det(2πσ)
, (3)216

217

and so the BC between Gaussian density estimates resolves to218

BC =

√
det

(
GM

AM

)
e−

1
4MD2

, (4)219

220
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in terms of the arithmetic and geometric means of the covariance matrices221

AM =
σ1 + σ2

2
, GM =

√
σ1 σ2 , (5)222

223

and the Mahalanobis distance (Mahalanobis, 1936) between the two distributions224

MD =

√
(µ1−µ2)TAM−1(µ1−µ2) . (6)225

226

The closely related Bhattacharyya distance (BD = − log BC; Bhattacharyya, 1946) is227

defined228

BD = − log BC , 0 ≤ BD <∞ , (7)229
230

which here resolves to231

BD =
1

8
MD2 +

1

2
tr log

(
AM

GM

)
. (8)232

233

Term-by-term all components of the BD are non-negative, with the first set of terms234

involving the Mahalanobis distance being zero only for identical mean locations, and235

the second set of terms invoking the AM-GM inequality being zero only for identical236

covariance matrices.237

First we propagate uncertainty in the mean and covariance parameters into uncertainty238

in B̂D via the delta method (Cox, 2005) to obtain VAR[B̂D]. Second, as an improvement239

over asymptotically normal CIs, and as the BD roughly takes the form of a square distance,240

we approximate the BD statistic as being chi-squared with degrees of freedom equal to241

DOF =
2 BD2

VAR[B̂D]
, (9)242

243

in accord with the chi-square variance formula. We then transform the BD CIs back244

into BC CIs via BC = exp(−BD). Finally, for the kernel density BC CIs, we apply the245
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same χ2 approximation (9), but with the AKDE point estimate for the BD and the246

GRF estimate for VAR[B̂D].247

Bias correction for the BC248

As noted by Fieberg & Kochanny (2005), overlap is likely to be negatively biased at249

small sample sizes. In addition to negative biases in HR estimation driven by unmodeled250

autocorrelation, part of this problem is the result of small sample size bias in the BC251

(Djouadi & Snorrason, 1990), which is a common property of asymptotically consistent252

estimators (Basu, 1956). As a solution, here we derive an approximate bias correction253

for the BD254

B̂D =
1

8
(µ̂1−µ̂2)

T
σ̂−1 (µ̂1−µ̂2) +

1

2
log det σ̂ − 1

4
log det σ̂1 −

1

4
log det σ̂2 , (10)255

σ̂ ≡ 1

2
(σ̂1 + σ̂2) , (11)256

257

which we will also apply to the AKDE BD point estimate. Even if the two distributions258

are Gaussian, the BD plug-in estimator — which calculates the BD directly by assuming259

that the density estimates are true — is severely biased. This bias correction will be260

exact in the case of IID processes of equal variance, which is known to be solvable (Djouadi261

& Snorrason, 1990), but approximately generalized for the movement processes we262

consider and verified with simulation (Appendix A.2). Most of the bias is due to the263

fact that uncertainty in the centroids translates strictly into positive BD, even if the264

two distributions are identical. First we address this largest source of bias, by decomposing265

the mean estimates into their expectation values and (mean-zero) error266

µ̂ = µ + ξ , 〈ξ〉 = 0 , COV[ξ] = COV[µ̂] , (12)267
268
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whereupon we can express the first expected BD term269

〈
(µ̂1−µ̂2)

T
σ̂−1 (µ̂1−µ̂2)

〉
= tr

〈
(ξ1−ξ2) (ξ1−ξ2)

T
σ̂−1

〉
+ (µ1−µ2)

T 〈σ̂−1〉 (µ1−µ2) + · · · ,

(13)

270

271

plus terms like σ̂−1ξ that we ignore because ξ is mean zero and asymptotically uncorrelated272

with σ̂. Next we note the approximation273

ĈOV[µ̂] ∝ σ̂ , (14)274
275

which is exact for many stationary processes (e.g., Fleming et al., 2014c), with a proportionality276

constant equal to the effective sample size of the mean. Therefore we have277

tr
〈

(ξ1−ξ2) (ξ1−ξ2)
T
σ̂−1

〉
≈ tr

[
COV[µ̂1−µ̂2]σ−1

]
, (15)278

279

when the two covariances are similar, allowing us to here ignore the biases in σ̂−1 . We280

note that, in general, this term related to home-range centroid uncertainty is by far the281

largest source of bias in BD estimation. Furthermore, if the two movement process are282

independent of each other, then we have283

COV[µ̂1−µ̂2] = COV[µ̂1] + COV[µ̂2] . (16)284
285

For the remaining terms of the plug-in BD estimator, we require some distributional286

assumptions on the covariance estimates σ̂1, σ̂2, and σ̂. We take σ̂1 and σ̂2 to be Wishart287

distributed (Wishart, 1928) where effective sample sizes N1 and N2 are estimated with288

the parameters (Fleming & Calabrese, 2017). For the average covariance σ̂, we construct289

a Welch-Satterthwaite (Satterthwaite, 1946) like approximation that is exact for equal290

covariances. If σ̂ were χ2 distributed, the ordinary Welch-Satterthwaite approximation291

would fix its degrees of freedom via the relationship between its variance and that of292

its constituents. However, σ̂ is matrix valued and has many variances. We choose to293
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conserve the trace variance, which is both additive and rotationally invariant:294

tr VAR[σ̂] =
1

4
tr VAR[σ̂1] +

1

4
tr VAR[σ̂2] , (17)295

tr diag(σ̂)2

N
=

tr diag(σ̂1)2

4N1
+

tr diag(σ̂2)2

4N2
, (18)296

N =
4 tr diag(σ̂)2

tr diag(σ̂1)2

N1
+ tr diag(σ̂2)2

N2

. (19)297

298

Next the expected inverse estimate matrix resolves to299

〈σ̂−1〉 =
N

N−dim(σ)−1
σ , (20)300

301

and so we clamp our effective sample size estimates to N ≥ dim(σ) + 2, which is the302

smallest discrete number of IID locations with which one can estimate properly. Below303

this value the estimate is likely not approximately Wishart distributed and N is likely304

not well estimated. So by clamping N we effectively clamp our bias correction. Next,305

the expected log determinant terms resolve to306

〈log det σ̂〉 = log detσ + ψdim(σ)(N/2)− log(N/2)dim(σ) , (21)307
308

in terms of the multivariate digamma function ψd.309

Finally, as BD ≥ 0, we debias the plug-in estimator by dividing by a large number310

rather than by subtracting a large number:311

θ̂ →

(
θ̂

θ̂ + B̂IAS[θ̂]

)
θ̂ = θ̂ − B̂IAS[θ̂] +O

(
N−2

)
, (22)312

313

which is the same to first order. This serves as a first order bias correction to both the314

BD and the BC.315
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Workflow316

The resulting centerpiece of our inferential framework is a bias corrected BC estimate,317

with confidence intervals, that is comparable across studies. To get to that point, the318

user must first proceed through a workflow designed to produce the best possible estimates319

from their data, but warn when such an analysis is inappropriate. This workflow builds320

on that described in Calabrese et al. (2016) for HR analysis.321

The first step is ensuring that the data at hand are appropriate for HR analysis,322

which means that there must be clear evidence of range-residency. Data from non-range-resident323

individuals, or from range-resident intervals that were only briefly tracked may not324

satisfy this criterion. When the data do not show evidence of range-residency, HR estimation325

is not appropriate (Calabrese et al., 2016; Fleming & Calabrese, 2017), which implies326

that HR overlap analysis is also not appropriate. We therefore strongly recommend327

starting with visual verification of range-residency via variogram analysis (Fleming328

et al., 2014b). Specifically, the variogram of a range-resident individual should show a329

clear asymptote.330

Once range-residency has been verified, the next step is to fit a series of range-resident331

movement models to the data, such as the IID, Ornstein-Uhlenbeck (OU; Uhlenbeck &332

Ornstein, 1930), and OU-Foraging (OUF; Fleming et al., 2014b,c) processes. Model333

selection should then be employed to identify the best model for the data (Fleming334

et al., 2014c, 2015b). The selected model should then be visually compared to the variogram335

to ensure that the model is capturing the key features in the data. Models that fail to336

converge, or that do not provide a reasonable fit to the data are another indication that337

HR analysis may be inappropriate (Calabrese et al., 2016).338

With a fitted, selected movement model in hand, AKDE HR estimates can then339

be calculated, and these can be used to obtain BC estimates and CIs. These overlap340

estimates may either be the final product of the analysis, or be used in subsequent341

analyses. Importantly, the confidence intervals attached to each BC estimate can be342

straightforwardly propagated into derived quantities, such as the mean overlap within a343
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group, which can facilitate testing hypotheses on similarity or differences among groups344

of interest. While the workflow we describe involves several steps, the ctmm package,345

and graphical user interface (Dong et al., 2017) streamline this procedure. A full example346

of the workflow is shown in Appendix B.347

Simulation study348

To examine the statistical properties of the BC, and the coverage of our CIs, we simulated349

tracking data with variable sampling durations and frequencies. Data were simulated350

based on pairs of both IID processes, and OUF processes (Fleming et al., 2014b,c),351

parameterized such that the true overlap between these pairs was fixed at 0.5. Simulating352

from an OUF process generates relocations that feature autocorrelated positions and353

velocities, as well as restricted space use, and are representative of modern GPS tracking354

data commonly used in HR analyses (Fleming & Calabrese, 2017).355

Importantly, the timescale over which autocorrelation in position decays, τp (also356

termed the HR crossing time; Calabrese et al., 2016), is a key parameter for HR estimation357

(Noonan et al. under review). Formally, τp can be quantified from the data as the timescale358

over which an individual’s positional autocorrelation decays by a factor of 1
e , and its359

movement process reverts to the mean location (Fleming et al., 2015a; Fleming & Calabrese,360

2017). The duration of the observation period (T ), in relation to τp, will thus dictate361

the effective sample size (ne) of a dataset via362

ne ≈
T

τp
, (23)

which may be interpreted as the approximate number of range crossings that occurred363

during the sampling period. We tailored our simulations according to their relative364

effects on ne. These were:365

i) Sampling duration. Observations were recorded eight times/day, and we manipulated366

sampling duration (ranging from 1 to 4096 days in a doubling series). For OUF367

simulations, the HR crossing time was set to one day, and the velocity autocorrelation368
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timescale to 1/5 of a day. Notably, this parameterization was such that in these369

simulations the sampling duration in days exhibited a 1:1 relationship with ne.370

ii) Sampling frequency. Here, the sampling duration was fixed at 32 days, and371

we manipulated the sampling frequency (ranging from 1 to 1024 fixes/day in a372

doubling series). Again, for the OUF process HR crossing time was set to one day,373

and the velocity autocorrelation timescale to 1/5 of a day. The fixed sampling374

duration in these simulations resulted in ne being fixed at 32, irrespective of variation375

in the sampling frequency.376

We then compared the accuracy of the underlying HR estimates, the accuracy377

of the estimated overlap, and the realized coverage of the confidence intervals. Results378

were averaged over 1000 simulations per manipulation. The computations were conducted379

on the Smithsonian Institution High Performance Cluster (SI/HPC).380

Empirical study381

We demonstrate the functionality of this method using GPS data from Mongolian gazelles.382

Mongolian gazelles are medium sized herbivores that cross their ranges on seasonal383

timescales (Fleming et al., 2014c,b). Positional data for 36 Mongolian gazelle were collected384

in Mongolia’s Eastern Steppe between 2007 and 2011 (Fleming et al., 2014a). Both385

variogram analysis (Fleming et al., 2014c) and model selection (Calabrese et al., 2016)386

were used to confirm that there was evidence of range-residency in the data. From387

these diagnostic checks, 13 individuals showed no signs of range-resident behavior, and388

we restricted our analyses to the 23 range-resident individuals. HR estimation was389

then carried out using KDE and AKDE as described above. We then computed all390

pairwise BCs ± 95% CIs on the KDE and AKDE estimates. Notably, the long HR391

crossing timescales (x̄ = 111.5 days; range = 8.0 – 443.2), and comparatively short392

tracking durations (x̄ = 381.0 days; range = 67.2 – 755.0), here produced a mean ne of393

6.1 (ranging from 0.7 – 24.6). This is a regime where the negative bias of conventional394

KDE is known to have serious implications for HR estimates on autocorrelated data395
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(Fleming & Calabrese, 2017).396

Downstream analyses397

To further highlight the utility of these confidence intervals, we used the estimated398

overlap to quantify the edges of a spatial interaction network (Wey et al., 2008). Because399

point estimates were accompanied by CIs, we were able to subset edges into two categories:400

i) Supported. Well supported edges were identified as cases where two individuals401

exhibited overlapping space use, with a minimum CI that was greater than 0.01 –402

i.e., there was a 95% certainty that the overlap was ≥ 0.01403

ii) Unsupported. Unsupported edges were identified as cases where the point estimate404

suggested overlapping space use, but with a minimum CI that was less than 0.01 –405

i.e., there was insufficient evidence to be certain that the overlap differed significantly406

from 0.407

We then quantified a number of commonly used diagnostics (i.e., network density,408

mean path length, and closeness centrality; Wey et al., 2008), to investigate how these409

might differ when the network was based only on statistically supported edges, versus410

the inclusion of unsupported edges.411

All analyses were conducted in the R environment (R Core Team, 2016), using the412

methods implemented in the package ctmm (Calabrese et al., 2016).413

Results414

Simulation results415

Asymptotic properties of the BC416

Simulations revealed that for IID data, both AKDE and KDE HR estimates provided417

identical results, and were relatively unbiased except at very small sample sizes (Fig.418

1a). The resulting overlap was also identical between estimators, and increasing the419

number of fixes, by either increasing the sampling duration (Fig. 1b) or frequency (Fig.420
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1e), had the expected effect of increasing the accuracy of the overlap estimate and decreasing421

the uncertainty. Notably, the CIs on the BC offered reasonable coverage of the true422

overlap across all sampling regimes, albeit with some persistent negative bias at large423

sample sizes (Fig. 1c,f). This was the result of bias in the BC decaying too slowly relative424

to the variance (see Appendix A.3).425

For autocorrelated data in contrast, AKDE 95% HR estimates were generally426

accurate across the range of sample durations (Fig. 2a), and frequencies (Fig. 2d) we427

simulated, whereas KDE HR estimates were severely biased for all but the largest datasets.428

As a result, while the estimated overlap between AKDE and KDE estimates both converged429

to the truth as sampling duration increased (Fig. 2b), asymptotic consistency for KDE430

estimates was severely delayed. Furthermore, increasing the sampling frequency increased431

the negative bias in overlap estimates derived from KDE, but, appropriately, did not432

influence overlap estimates based on AKDE (Fig. 2e).433

The coverage of 95% CIs for the KDE derived overlap estimates was severely434

biased under all of the scenarios we tested (Fig. 2c, f). In contrast, the coverage of435

CIs on the AKDE estimates consistently provided close to nominal coverage of the true436

overlap.437

Comparability of estimates438

Our baseline simulation study controlled the effect of the movement parameters by439

assuming the individuals exhibited identical movement strategies, and were sampled440

at the exact same times. Under these conditions, the improved accuracy of AKDE HRs441

estimates resulted in more accurate overlap estimates, with 95% CIs that provided close442

to nominal coverage (Fig. 3a). There are realistic complications to our basic simulation443

strategy, however, including cases where individuals are subject to the same sampling444

design, but exhibit different movement strategies, and cases where both movement445

strategies and sampling designs differ. Importantly we found that AKDE based overlap446

still provided reasonable coverage for both of these cases (Fig. 3c,e). In contrast, because447

of the differential bias in KDE HR estimates, the estimated overlap differed substantially448
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between each of these scenarios, and in every case failed to provide coverage of the true449

value (Fig. 3b,d,f).450

Empirical case study451

Consistent with our simulated findings of negative bias in KDE HR and BC estimates452

at mid to low ne on autocorrelated data, empirical AKDE HR estimates were larger453

than KDE estimates for all pairs (Fig. 4a). Median pairwise overlap between the 276454

pairs of individuals was 0.66 (95% CI 0.58 – 0.76) when the overlap was estimated from455

AKDE HR estimates, but five-fold lower when estimated from KDE estimates (median456

= 0.13; 95% CI 0.06 – 0.22).457

The severe negative bias of KDE derived overlap was persistent across all individuals.458

This can be illustrated in a specific example, where the KDE HR estimates resulted in459

an estimated overlap of 0.02 (95% CI 0.01 – 0.03), whereas the AKDE HRs resulted in460

an overlap of 0.80 (95% CI 0.22 – 0.99). Visual inspection of the range estimates for461

these individuals revealed substantial negative bias in the KDE HR, whereas the AKDE462

HR was larger, with appropriately wide CIs considering the small ne of ∼ 4 for each463

HR estimate (Fig. 4 b–c).464

Downstream analyses465

Because these overlap estimates were accompanied by confidence intervals, the uncertainty466

can be used to inform downstream analyses. For instance, a spatial network analysis467

based on the estimated overlap revealed 461 edges of variable strength (Fig. 5). Of468

these, 275 were well supported, whereas 186 had no statistical support. We found that469

basing the network off of all possible edges, versus only those edges with statistical470

support, influenced its properties and any potential biological inferences that would471

be derived from it. For instance, network density was reduced from 0.86 to 0.63 when472

the analysis was restricted to only the well supported edges. Furthermore, only utilizing473

statistically supported edges increased the mean path length from 1.13 to 1.39. Interestingly,474

despite decreasing density and increasing the mean path length, constructing the network475
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based on only well supported edges resulted in a two-fold increase in the closeness centrality476

compared to the network constructed with both supported and unsupported edges (0.45477

vs. 0.23 respectively).478

Discussion479

Despite the routine nature of estimating overlapping space use (e.g., Berger & Gese,480

2007; Frère et al., 2010; Sanchez & Hudgens, 2015; Dougherty et al., 2018), there exists481

no formal inferential framework for this analysis. This is largely due to the inherent482

difficulties associated with HR estimation (Fieberg & Börger, 2012) and exacerbated483

by the historical lack of CIs on both HR, and overlap estimates. As a solution, we have484

demonstrated how AKDE HR estimates (Fleming et al., 2015a; Fleming & Calabrese,485

2017) can serve as a reliable foundation on which to base statistical inference. In addition,486

we have implemented a small-sample-size bias correction for the BC and derived well-behaved,487

approximate CIs on the point estimate. Collectively, these advances permit researchers488

to accurately quantify HR overlap, even when sampling strategies and underlying movement489

parameters differ among groups being compared, and test whether any observed differences490

are statistically meaningful.491

Home range and overlap estimation: an intrinsic relationship492

A crucial component of any statistical inference is having comparable measures on which493

to base analyses. Overlap is typically conditional on HR estimates (Millspaugh et al.,494

2004; Fieberg & Kochanny, 2005), which are themselves estimated from animal tracking495

data. Because overlap estimation relies on at least three separate estimates (two HR496

estimates, and their overlap), it follows that this analysis is particularly vulnerable to497

issues of estimator bias. Accurate HR estimation is a deceptively challenging problem498

however, as autocorrelation (Fleming et al., 2015a), small-sample-size bias (Fleming499

& Calabrese, 2017), and sampling irregularities (Frair et al., 2010; Fleming et al., 2018)500

will significantly influence any statistical analyses applied to animal tracking data. More501

subtly, even identical sampling strategies can still produce differentially biased HR502
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estimates if the underlying parameters of movement differ markedly between individuals503

(Fleming & Calabrese, 2017, Noonan et al. under review). As these are nearly ubiquitous504

aspects of animal tracking data, accurate overlap estimation requires statistical methods505

that can handle these complications, without introducing artifactual differences due506

purely to estimator bias.507

In this respect, our simulation study revealed that, for autocorrelated data, KDE508

regularly underestimated HR sizes (Fleming & Calabrese, 2017, Noonan et al. under509

review), and this negative bias was directly propagated to overlap estimates. For KDE,510

the amount of data required to achieve an accurate measure of overlap was very large,511

and most empirical cases are likely to underestimate the true overlap (Fieberg & Kochanny,512

2005). In contrast, AKDE HRs were larger, but significantly more accurate, which513

translated to more accurate overlap estimates. Crucially, when we varied the sampling514

design and movement strategies between the individuals we were comparing, AKDE515

based estimates provided reliable coverage of the true overlap, whereas this was not516

the case for KDE. Consistent with the results of our simulation study, empirical AKDE517

HRs from autocorrelated Mongolian gazelle GPS data were ca. twice as large as KDE518

estimates. This resulted in the median pairwise overlap being five-fold larger when519

based on AKDE versus KDE. Had an analysis been based on the biased KDE estimates,520

one would have erroneously concluded that there was little spatial overlap in this system,521

whereas, results based on AKDE’s more rigorous estimates revealed these individuals522

actually exhibited extensive overlap. Although these empirical estimates could not523

be compared to a truth, as per our simulations, this finding is also consistent with a524

recent analysis by Noonan et al. (under review). In a large scale comparative study525

encompassing 369 individuals across 30 species, they found that AKDE 95% HR estimates526

consistently included ∼95% of holdout observations, whereas KDE estimates included527

∼92% at high ne (> 256), but only ∼75% at low ne. This means AKDE’s larger estimates528

are accurate, while those produced by conventional KDE on the same data are consistently,529

and often grossly, too small. The net result is that AKDE provides a solid foundation530
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for estimating overlap under realistic sampling regimes, resulting in accurate overlap531

estimates that can validly be compared across studies.532

As described above, a fundamental component of estimating HR overlap is having533

comparable measures on which to base analyses. Notably, in this study, we consider534

range estimators in the sense of Burt (1943), which estimate long-run space use, assuming535

the focal individual does not change its movement process (Fleming et al., 2015a). This536

includes KDEs, Minimum Convex Polygons (MCP; Mohr, 1947), and time-naive Local537

Convex Hulls (LoCoH) (Getz et al., 2007). Also of interest are occurrence distribution538

estimators such as the Brownian bridge (Horne et al., 2007), or t-LoCoH (Lyons et al.,539

2013) which quantify uncertainty in the animal’s location during the sampling period,540

including times not sampled. Crucially, this uncertainty vanishes in the limit where541

both the sampling interval and telemetry error approach zero. Although these two mathematically542

distinct classes of distributions have been historically conflated under the umbrella term543

of “utilization distributions”, they have very different interpretations and use cases544

(Fleming et al., 2015a). Consequently, overlap based on occurrence estimates have very545

different meanings from overlap based on range estimates, and are beyond the scope of546

the present work.547

We also note that extending our bias-correction and CIs to other HR estimators,548

such as MCP, LoCoH, or non-GRF KDE bandwidth optimizers, is not a tractable problem.549

First, our methods are explicitly based on the GRF approximation, so they are not550

consistent with non-GRF estimators. Second, the GRF-based methods implemented551

in ctmm are, to our knowledge, the only HR estimators that quantify uncertainty. As552

an uncertainty estimate is a prerequisite for our error propagation techniques, it would553

not currently be possible to adapt our approach to other estimators. Finally, the target554

distributions and expectation values of geometric methods such as MCP and LoCoH555

are usually unknown, which makes these estimators incompatible with the methods556

developed here.557
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Properties of the overlap estimator558

In addition to utilizing reliable HR estimates, the overlap estimator itself should have559

desirable properties (Fieberg & Kochanny, 2005). While several valid estimators exist,560

the BC (Bhattacharyya, 1943) stands out because of its statistical validity, geometric561

interpretability, computational efficiency, and asymptotic consistency. As noted by562

Fieberg & Kochanny (2005) however, the BC is prone to exhibiting negative, small-sample-size563

bias (Djouadi & Snorrason, 1990). To correct for this, we derived a small-sample-size564

bias correction, which improved the accuracy of BC estimates (see also Djouadi & Snorrason,565

1990).566

Also problematic is the historical lack of CIs on overlap estimates. Overlap is an567

estimate derived from data and should be accompanied by a measure of the uncertainty568

(Pawitan, 2001). Without this, one cannot properly infer the importance of a given569

estimate. As a solution, we have derived CIs on the BC based on a GRF approximation.570

Using simulated data, we demonstrated how this implementation will provide reasonable571

coverage of the true overlap. We note, however, that, while generally well behaved,572

there was some persistent negative bias in the coverage of these CIs. The biased coverage573

is likely the result of the bias in the BC point estimate decaying too slowly relative to574

the variance as ne increased (Fig. A.2). With asymptotically efficient estimators, this575

ratio would decay at a rate of 1/
√
N or better, whereas here it increases at a rate of576

∼
√
N . As such, their coverage should be treated with caution, particularly at large ne.577

Furthermore, because we approximate the HRs as Gaussian when estimating uncertainty,578

the CIs may exhibit unintended behavior when the overlap is dependent on non-Gaussian579

features.580

Despite these limitations, well-behaved CIs for HR overlap is a novel feature, and581

permits true statistical inference on overlap estimates. For instance, these CIs can be582

applied to a reference value of interest (e.g., the mean overlap between individuals of583

the same species studied elsewhere) to test for significant differences between these,584

as opposed to relying on ad hoc comparisons. Additionally, if overlap is being used to585
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inform subsequent analyses, CIs can be used to improve these. For example, we found586

that differentiating between the 275 overlap estimates that were well supported by the587

data and the 186 that may have been artifactual significantly influenced the properties588

of an interaction network of Mongolian gazelle. When based on all possible edges, the589

network suggested a larger number of edges, but with a low closeness centrality. Conversely,590

when based only on edges with statistical support, the network density decreased, but591

closeness increased. The supported, and unsupported, networks would each lead to a592

unique set of biological interpretations, with only the former being supported by the593

data.594

Conclusion595

In conclusion, we have developed the first inferential framework for HR overlap tailored596

for the specific needs of ecologists that is both statistically valid and computationally597

efficient. Collectively, the more accurate and comparable HR estimates provided by598

AKDE (Fleming et al., 2015a; Fleming & Calabrese, 2017, Noonan et al. under review)599

and our novel bias correction and CIs on the BC permit rigorous overlap estimation.600

This method is now available via command line interface through the ctmm package601

(Calabrese et al., 2016), or through the web based graphical user interface at ctmm.shinyapps.io/ctmmweb/602

(Dong et al., 2017).603
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Figure 1: The asymptotic properties of KDE and AKDE HR estimators (panels a and
d), and the BC (panels b and e) for simulated, IID data, as well as the coverage of
the CIs (panels c and f), as a function of sampling duration (top row), and frequency
(bottom row). In all panels the dashed horizontal lines depict the truth, the solid line
the mean point estimate, and the shaded regions the 95% CIs.

31



1 4 16 64 256 1024 4096

0.0

0.5

1.0

1.5

1 4 16 64 256 1024 4096

neffective

Sampling duration (days)

95
%

 a
re

a 
es

ti
m

at
es AKDE

KDE

a)

1 4 16 64 256 1024 4096

0.00

0.25

0.50

0.75

1.00

1 4 16 64 256 1024 4096

neffective

Sampling duration (days)

B
ha

tt
ac

ha
rr

ya
 c

oe
ff

ic
ie

nt

b)

1 4 16 64 256 1024 4096

0.0

0.2

0.4

0.6

0.8

1.0

1 4 16 64 256 1024 4096

neffective

Sampling duration (days)

C
ov

er
ag

e

c)

32 32 32 32 32

0.4

0.8

1.2

1.6

1 4 16 64 256

neffective

Sampling frequency (fixes/day)

95
%

 a
re

a 
es

ti
m

at
es

d)

32 32 32 32 32

0.00

0.25

0.50

0.75

1.00

1 4 16 64 256

neffective

Sampling frequency (fixes/day)

B
ha

tt
ac

ha
rr

ya
 c

oe
ff

ic
ie

nt
e)

32 32 32 32 32

0.0

0.2

0.4

0.6

0.8

1.0

1 4 16 64 256

neffective

Sampling frequency (fixes/day)
C

ov
er

ag
e

f)

Figure 2: The asymptotic properties of KDE and AKDE HR estimators (panels a and
d), and the BC (panels b and e) for simulated, autocorrelated tracking data, and the
coverage of the CIs (panels c and f), as a function of sampling duration (top row), and
frequency (bottom row). In all panels the dashed horizontal lines depict the truth,
the solid line the mean point estimate, and the shaded regions the 95% CIs. Notably,
convergence to the truth was much slower for KDE, and the coverage of KDE’s CIs was
far from appropriate in all cases.
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Figure 3: HR and overlap estimates for two simulated individuals with a true overlap
of 0.50. In all panels, the dashed circles depict the true 95% areas, the solid black lines
the estimated 95% areas, and the grey lines the 95% CIs on the area estimates. In
the first row, relocations were simulated from OUF models with identical movement
parameters and sampling times. In the second row, sampling was held consistent, but
the individual plotted in yellow had a HR crossing time of 1 week versus 1 day for the
individual in red. In the third row, movement again differed between individuals, but
here the individual in yellow was sampled once every 30min, versus once every 3hrs
for the individual in red. Note how in all cases AKDE based overlap estimates were
relatively consistent, and provided coverage of the true overlap, whereas KDE based
overlap estimates varied substantially, and consistently failed to provide coverage of the
truth.
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Figure 4: Panel a) depicts the relationship between pairwise estimates of the BC for
Mongolian gazelle, computed from KDE and AKDE HR estimates. The dashed 1:1
line depicts parity between these. Note how all cases fall above this line, highlighting
how AKDE derived BC suggests more overlap than KDE derived BC. An example of
this discrepancy is depicted in panel b), with AKDE BC suggesting extensive overlap
0.80 (0.22 – 0.99), whereas in c) the negative bias in KDE propagates to produce a
biased estimate of the overlap 0.02 (0.01 – 0.03). Crucially, with effective sample sizes
of ca. 4 for each HR estimate, the CIs approximated from the AKDE estimates were
appropriately wide, versus KDE’s deceivingly narrow CIs.
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Figure 5: Figure depicting a) the GPS locations for 23 Mongolian gazelle tracked in
Mongolia’s Eastern Steppe; b) a network diagram with edge weights based on overlap
values; and c) an example case of two HR estimates where the point estimate of the
overlap suggests a connection, but the CIs on the estimates suggest that connection
might not be statistically significant. The dashed lines in b) depict pairs where the
point estimate suggests a connection, but with CIs that include 0.01 and thus may not
be statistically significant. The transparency of the lines is proportional to the point
estimate of the BC. The connection depicted in red on the right-hand side of panel b)
corresponds to the pair in panel c).
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