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Abstract
1.	 Despite the routine nature of estimating overlapping space use in ecological research, 
to date no formal inferential framework for home range overlap has been available to 
ecologists. Part of this issue is due to the inherent difficulty of comparing the esti-
mated home ranges that underpin overlap across individuals, studies, sites, species, 
and times. As overlap is calculated conditionally on a pair of home range estimates, 
biases in these estimates will propagate into biases in overlap estimates. Further com-
pounding the issue of comparability in home range estimators is the historical lack of 
confidence intervals on overlap estimates. This means that it is not currently possible 
to determine if a set of overlap values is statistically different from one another.

2.	 As a solution, we develop the first rigorous inferential framework for home range over-
lap. Our framework is based on the autocorrelated-Kernel density estimation (AKDE) 
family of home range estimators, which correct for biases due to autocorrelation, small 
effective sample size, and irregular sampling in time. Collectively, these advances allow 
AKDE estimates to validly be compared even when sampling strategies differ. We then 
couple the AKDE estimates with a novel bias-corrected Bhattacharyya coefficient (BC) 
to quantify overlap. Finally, we propagate uncertainty in the AKDE estimates through 
to overlap and thus are able to put confidence intervals on the BC point estimate.

3.	 Using simulated data, we demonstrate how our inferential framework provides 
accurate overlap estimates, and reasonable coverage of the true overlap, even at 
small sample sizes. When applied to empirical data, we found that building an in-
teraction network for Mongolian gazelles Procapra gutturosa based on all possible 
ties, vs. only those ties with statistical support, substantially influenced the net-
work’s properties and any potential biological inferences derived from it.

4.	 Our inferential framework permits researchers to calculate overlap estimates that can 
validly be compared across studies, sites, species, and times, and test whether observed 
differences are statistically meaningful. This method is available via the R package ctmm.
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1  | INTRODUC TION

Ecologists have long been interested in patterns and drivers of animal 
space use (Brown & Orians, 1970; Burt, 1943; Jetz, 2004). Decisions 
on what areas to occupy can influence fitness through a wide range 
of pathways such as foraging efficiency (Mitchell & Powell, 2012) 
or predator–prey dynamics (Mitchell & Lima, 2002), and even drive 
evolutionary trajectories (Lukas & Clutton-Brock, 2013). Related to 
this is the question of overlapping space use between individuals 
and/or populations. Quantifying overlap can provide an informative 
metric for testing hypotheses on interspecific competition (Berger 
& Gese, 2007), territoriality (Grant, Chapman, & Richardson, 1992), 
and mating systems (Powell, 1979). Furthermore, overlap can be 
used to underpin analyses of social network structure (Frère et al., 
2010) and contact rates, with implications for disease transmis-
sion (Dougherty, Seidel, Carlson, Spiegel, & Getz, 2018; Sanchez & 
Hudgens, 2015). Trends in overlapping space use are also routinely 
used in determining allometric scaling laws (Grant et al., 1992; Jetz, 
2004). The rapid increase in both the availability and quality of track-
ing data in recent years (Kays, Crofoot, Jetz, & Wikelski, 2015) has 
made the concept of home range (HR) overlap increasingly relevant. 
Ecologists are now in a position to address overlap-related questions 
for a larger number of species and individuals, in more ecosystems, 
and with more accurate data than ever before.

Despite these advances, a formal inferential framework for HR 
overlap is still lacking. Overlap is typically quantified by the first- 
estimating HRs from tracking data and then applying an overlap met-
ric to the range estimates (Fieberg & Kochanny, 2005; Millspaugh, 
Gitzen, Kernohan, Larson, & Clay, 2004). A wide range of overlap 
metrics have been proposed in the literature, spanning the gamut 
from ad hoc indices to more formal measures. These different met-
rics have contrasting properties and can produce highly different 
overlap estimates on the same data (see Fieberg & Kochanny, 2005; 
Millspaugh et al., 2004). Further compounding this problem is the 
inherent difficulty of comparing the estimated HRs that underpin 
overlap across studies, sites, species, and times (Fleming & Calabrese, 
2017). There is broad agreement in the literature that HR estimates 
based on different sampling strategies are difficult to compare, as 
they may be exposed to different degrees of bias (Fieberg & Börger, 
2012; Fleming et al., 2018; Frair et al., 2010). More subtly, even iden-
tical sampling strategies can still produce differentially biased HR 
estimates if the underlying parameters of movement differ among 
individuals in the comparison (Fleming & Calabrese, 2017). As over-
lap is calculated conditionally on a pair of HR estimates, biases in the 
HR estimates will propagate into biases in overlap estimates (Fieberg 
& Kochanny, 2005). It follows then that differential biases in HR es-
timates among different groups of interest will tend to propagate 
into differential biases in overlap estimates, rendering comparisons 
difficult to interpret and potentially unreliable.

Additionally, none of the overlap metrics of which we are aware 
come equipped with confidence intervals to quantify the uncer-
tainty in the estimates. This means that it is currently not possible to 
determine if a set of overlap values is statistically different from one 

another or from a reference value of interest. To see this, consider a 
case where one wishes to compare two overlap estimates from two 
pairs of individuals: 0.35 and 0.55. If the 95% confidence intervals 
for each estimate are disjoint, then we may conclude that the two 
pairs have significantly different measures of overlap. If the 95% 
confidence intervals are not disjoint, then the point estimates may 
not be significantly different. In other words, without confidence 
intervals, one cannot properly interpret differences between esti-
mates (Pawitan, 2001).

Here, we develop the first inferential framework for HR over-
lap by building on previous work in quantifying overlap (Fieberg 
& Kochanny, 2005) and by leveraging recent advances in HR es-
timation (Fleming & Calabrese, 2017; Fleming, Fagan, et al., 2015; 
Fleming et al., 2018). We base our approach on the Bhattacharyya 
coefficient (BC; Bhattacharyya, 1943, also called the Bhattacharyya 
affinity), which has a formal basis as a measure of similarity be-
tween two probability distributions and is straightforward to cal-
culate and interpret (Fieberg & Kochanny, 2005). We couple the 
BC with autocorrelated-Kernel density estimation (AKDE) as a 
general HR estimator (Fleming & Calabrese, 2017). Basing overlap 
estimation on AKDE has two primary advantages. First, AKDE cor-
rects for bias due to autocorrelation (Fleming, Fagan, et al., 2015), 
ordinary small-sample-size bias (Fleming & Calabrese, 2017), and 
temporal sampling bias (Fleming et al., 2018). The net result is that 
AKDE HR estimates can validly be compared across studies, sites, 
species, and times, even when sampling strategies and underlying 
movement parameters differ (Fleming & Calabrese, 2017; Fleming 
et al., 2018; Noonan et al., in review). Second, the error propaga-
tion techniques used to develop confidence intervals on AKDE area 
estimates (Fleming & Calabrese, 2017) can be extended to overlap 
estimation, allowing us to develop confidence intervals for overlap 
estimates. In addition, overlap estimates can exhibit negative bias 
(Fieberg & Kochanny, 2005), where part of this problem is the result 
of small-sample-size bias in the BC (Djouadi & Snorrason, 1990). As 
a solution, we derive an approximate, first-order bias correction to 
the BC.

We use a combination of simulated and empirical data to demon-
strate the power of our inferential framework. First, based on sim-
ulations, we study the bias in BC estimates as a function of the 
amount of autocorrelation in the data and of the effective sample 
size, both in cases where the underlying HR estimators account for 
these biases (AKDE), and where they do not (conventional KDE; 
Worton, 1989). We use a similar approach to quantify the realized 
coverage of our confidence intervals. We then show how our frame-
work can be used to accurately estimate overlap, even when individ-
uals exhibited different movement strategies and/or were subject to 
completely different sampling designs, whereas conventional meth-
ods fail. Finally, we show how our approach can be used in “down-
stream” applications that depend on overlap. Specifically, we build 
an interaction network (Wey, Blumstein, Shen, & Jordán, 2008) for 
Mongolian gazelles Procapra gutturosa where edges are established 
only between individuals whose overlap estimates received statisti-
cal support.
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2  | MATERIAL S AND METHODS

Our inferential framework consists of bias-corrected HR estimates, 
a bias-corrected BC estimator, and confidence intervals on the BC 
point estimate. We describe each of these elements in turn. We then 
describe how our framework can be used in practice via the ctmm R 
package by extending the workflow for HR analysis described in 
Calabrese, Fleming, and Gurarie (2016) or through the web-based 
graphical user interface at ctmm.shinyapps.io/ctmmweb/ (Dong, 
Fleming, & Calabrese, 2017).

2.1 | Home range estimation

At a minimum, calculating overlap requires a pair of HR estimates 
(Fieberg & Kochanny, 2005; Millspaugh et al., 2004). More generally, 
comparisons of overlap among different groups, species, places, or 
times may also be of interest. Nonetheless, as overlap estimates are 
conditional on estimated HRs, those underlying HR estimates must 
be directly comparable across the different groups the researcher 
wishes to evaluate. Unfortunately, HR estimates are subject to a 
number of biases, and differences in either sampling schedule, under-
lying movement parameters, or both can expose different data sets 
to different degrees of bias (Fieberg & Börger, 2012; Fleming & 
Calabrese, 2017). Datasets characterized by one of more of these 
forms of bias, which are the norm in practice, can thus render com-
parison of HR estimates across groups of interest highly misleading. 
The propagation of differentially biased HR estimates into differen-
tially biased overlap estimates has been a key impediment to the de-
velopment of a reliable inferential framework for HR overlap.

In decreasing order of importance, the three main sources of bias 
in HR estimation are unmodeled autocorrelation (Fleming, Fagan, 
et al., 2015), small effective sample sizes (Fleming & Calabrese, 
2017), and temporally biased sampling (Fleming et al., 2018). The 
magnitude of the negative bias in HR estimates that results from as-
suming the data is independent and identically distributed (IID) when, 
in fact, they are autocorrelated can be arbitrarily large (Fleming & 
Calabrese, 2017). All else being equal, the bias will increase with the 
strength of autocorrelation in the data. In contrast, small sample size 
bias will be estimator-specific and will tend to be of smaller magni-
tude than autocorrelation-related bias for modern GPS data. For ex-
ample, KDEs based on the conventional Gaussian reference function 
(GRF) approximation tend to overestimate HR areas at small sample 
size (Fleming & Calabrese, 2017). Temporally biased sampling occurs 
when some times are oversampled while others are undersampled 
(Frair et al., 2010), which can produce data that are not representa-
tive of the individual's space use (Fleming et al., 2018). Bias due to 
nonrepresentative sampling in time will tend to increase with the 
degree of unevenness in the sampling schedule.

These three sources of bias must be mitigated to validly compare 
HR estimates, and, by extension, to validly compare overlap estimates. 
We now describe HR estimation methods that, when used in com-
bination, largely corrects these biases. Autocorrelated-KDE is a gen-
eralization of the GRF-KDE (Fleming, Fagan, et al., 2015). The core 

advance in AKDE is that the optimization of the smoothing bandwidth, 
σB, explicitly accounts for autocorrelation in the data. Specifically, an 
autocorrelated movement model is used to represent the autocor-
relation structure of the data in the bandwidth optimization (Fleming 
et al., 2014c; Fleming, Subaşi, & Calabrese, 2015). Model selection 
(detailed below) can be used to arrive at an appropriate model for the 
data’s autocorrelation structure (Calabrese et al., 2016). When the 
data exhibit no autocorrelation, the IID model would be selected, and 
AKDE conditional on the IID model is exactly equivalent to the well-
known GRF-KDE. Recently, Fleming and Calabrese (2017) derived a 
small-sample-size, area-based correction that mitigates the tendency 
of KDEs based on the GRF approximation, including AKDE, to over-
smooth the data. Finally, (Fleming et al., 2018) developed an optimal 
weighting scheme, termed “wAKDE,” that leverages the autocorrela-
tion structure of the data to appropriately upweight undersampled 
times and downweight oversampled times. When used in concert, 
these innovations result in more accurate HR estimates that are di-
rectly comparable across groups of interest. A technical introduction to 
these estimators is provided in Supporting Information Appendix A.1.

2.2 | The Bhattacharyya coefficient

There are many different measures which quantify the relative simi-
larity (overlap) or dissimilarity (distance) of two probability distri-
butions. While both types of metrics can be used to describe the 
degree of shared space use between individuals, measures of over-
lap are used more commonly in biological contexts than measures 
of distance (but see Kranstauber, Smolla, & Safi, 2016). In their com-
parative analysis of overlap metrics, Fieberg and Kochanny (2005) 
concluded that the BC and Volume of Intersection statistic (VI; also 
known as the overlap coefficient; Inman & Bradley, 1989) were 
the most robust overlap estimators. While these two valid choices 
exist, we suggest that, for inferential purposes, an overlap estimator 
should satisfy the following criteria:

(i)	 Statistical validity. An appropriate overlap estimator should 
be based on an established measure of statistical distance or 
divergence that satisfies related mathematical properties.

(ii)	 Geometric interpretability. For uniform distributions, overlap 
should be proportional to the area of intersection.

(iii)	 Objectivity. Overlap should not depend on ad hoc parameters 
such as particular isopleths (e.g., 95% or 50%) or discretized 
distributions.

(iv)	 Computational efficiency. Computing the overlap of two dis-
tributions should scale efficiently with the sample size and ex-
tent of both distributions.

(v)	 Asymptotic consistency. An overlap estimator should con-
verge to the true overlap in the large sample size limit.

(vi)	 Minimal bias. An overlap estimator should have good small-
sample-size behaviour.

(vii)	 Quantifiable uncertainty. Overlap is an estimate derived from 
data and should be accompanied by a measure of the confi-
dence in that estimate (Pawitan, 2001).

ctmm.shinyapps.io/ctmmweb/
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The BC (Bhattacharyya, 1943) is a solid basis for inference on HR 
overlap because it satisfies criteria (i)–(v), and has the additional benefit 
of being well known to the ecological community (Fieberg & Kochanny, 
2005). Although the VI also meets these criteria (Fieberg & Kochanny, 
2005), approximating confidence intervals on the VI for the case of 
unequal variances presents severe difficulties (Reiser & Faraggi, 1999). 
Consequently, we base our approach on the BC. The BC between two 
continuous distributions p1 and p2 is given by

The BC is thus a function of the product of the two distributions, 
ranging from 0 ≤ BC ≤ 1, with BC = 0 only when p1 and p2 have no 
shared support and BC = 1 only when p1 = p2. We now turn our attention 
to criteria (vi) and (vii) and derive a confidence interval approximation, 
and bias correction that allow the BC to satisfy these additional criteria.

2.2.1 | Confidence intervals for the BC

When measuring the overlap of two HRs, the BC, as given above, is a 
point estimate of the overlap between the two distributions, but does 
not capture any of our uncertainty in the HR estimation procedure. 
To address this limitation, we derive confidence intervals for the BC, 
in the Gaussian reference function (GRF) approximation. AKDE's first 
step involves fitting stochastic movement models (Fleming, Fagan, 
et al., 2015) to estimate the mean and covariance parameters

where r(t) = (x(t), y(t)) denotes the individual's location. In the GRF 
approximation, the individual spatial density estimates are given by

and so the BC between Gaussian density estimates resolves to

in terms of the arithmetic and geometric means of the covariance 
matrices

and the Mahalanobis distance (Mahalanobis, 1936) between the two 
distributions

The closely related Bhattacharyya distance BD = − log BC; 
Bhattacharyya (1946) is defined

which here resolves to

Term-by-term all components of the BD are nonnegative, with the 
first set of terms involving the Mahalanobis distance being zero only 
for identical mean locations, and the second set of terms invok-
ing the AM-GM inequality being zero only for identical covariance 
matrices.

First, we propagate uncertainty in the mean and covariance pa-
rameters into uncertainty in B̂D via the delta method (Cox, 2005) 
to obtain VAR[B̂D]. Second, as an improvement over asymptotically 
normal CIs, and as the BD roughly takes the form of a square dis-
tance, we approximate the BD statistic as being chi-squared with 
degrees of freedom equal to

in accordance with the chi-square variance formula. We then trans-
form the BD CIs back into BC CIs via BC = exp(−BD). Finally, for the 
kernel density BC CIs, we apply the same χ2 approximation (9), but 
with the AKDE point estimate for the BD and the GRF estimate for 
VAR[B̂D].

2.2.2 | Bias correction for the BC

As noted by Fieberg and Kochanny (2005), overlap is likely to be 
negatively biased at small sample sizes. In addition to negative biases 
in HR estimation driven by unmodeled autocorrelation, part of this 
problem is the result of small-sample-size bias in the BC (Djouadi 
& Snorrason, 1990), which is a common property of asymptotically 
consistent estimators (Basu, 1956). As a solution, here we derive an 
approximate bias correction for the BD

which we will also apply to the AKDE BD point estimate. Even if 
the two distributions are Gaussian, the BD plug-in estimator—
which calculates the BD directly by assuming that the density es-
timates are true—is severely biased. This bias correction will be 
exact in the case of IID processes of equal variance, which is 
known to be solvable (Djouadi & Snorrason, 1990), but approxi-
mately generalized for the movement processes we consider and 
verified with simulation (Supporting Information Appendix A.2). 
Most of the bias is due to the fact that uncertainty in the centroids 
translates strictly into positive BD, even if the two distributions 
are identical. First, we address this largest source of bias, by de-
composing the mean estimates into their expectation values and 
(mean-zero) error

whereupon we can express the first expected BD term

(1)BC(p1,p2)=

+∞

∫
−∞

+∞

∫
−∞

√
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plus terms like �̂−1� that we ignore because ξ is mean zero and as-
ymptotically uncorrelated with �̂. Next, we note the approximation

which is exact for many stationary processes (e.g., Fleming et al., 
2014c), with a proportionality constant equal to the effective sample 
size of the mean. Therefore, we have

when the two covariances are similar, allowing us to here ignore the 
biases in �̂−1 . We note that, in general, this term related to home-
range centroid uncertainty is by far the largest source of bias in BD 
estimation. Furthermore, if the two movement process are inde-
pendent of each other, then we have

For the remaining terms of the plug-in BD estimator, we require 
some distributional assumptions on the covariance estimates �̂1, �̂2, 
and �̂. We take �̂1 and �̂2 to be Wishart distributed (Wishart, 1928) 
where effective sample sizes N1 and N2 are estimated with the pa-
rameters (Fleming & Calabrese, 2017). For the average covariance 
�̂, we construct a Welch–Satterthwaite (Satterthwaite, 1946) like 
approximation that is exact for equal covariances. If �̂ were χ2 dis-
tributed, the ordinary Welch–Satterthwaite approximation would fix 
its degrees of freedom via the relationship between its variance and 
that of its constituents. However, �̂ is matrix valued and has many 
variances. We choose to conserve the trace variance, which is both 
additive and rotationally invariant:

Next, the expected inverse estimate matrix resolves to

and so we clamp our effective sample size estimates to  
N ≥  dim(σ) + 2, which is the smallest discrete number of IID locations 
with which one can estimate properly. Below this value, the estimate 
is likely not approximately Wishart distributed and N is likely not well 
estimated. So by clamping N, we effectively clamp our bias correc-
tion. Next, the expected log-determinant terms resolve to

in terms of the multivariate digamma function ψd.
Finally, as BD ≥ 0, we debias the plug-in estimator by dividing by 

a large number rather than by subtracting a large number:

which is the same to first order. This serves as a first-order bias cor-
rection to both the BD and the BC.

2.3 | Workflow

The resulting centerpiece of our inferential framework is a bias-cor-
rected BC estimate, with confidence intervals, that is comparable 
across studies. To get to that point, the user must first proceed through 
a workflow designed to produce the best possible estimates from their 
data, but warn when such an analysis is inappropriate. This workflow 
builds on that described in Calabrese et al. (2016) for HR analysis.

The first step is ensuring that the data at hand are appropriate 
for HR analysis, which means that there must be clear evidence of 
range-residency. Data from non-range-resident individuals or from 
range-resident intervals that were only briefly tracked may not sat-
isfy this criterion. When the data do not show evidence of range-res-
idency, HR estimation is not appropriate (Calabrese et al., 2016; 
Fleming & Calabrese, 2017), which implies that HR overlap analysis 
is also not appropriate. We, therefore, strongly recommend start-
ing with visual verification of range-residency via variogram analysis 
(Fleming et al., 2014b). Specifically, the variogram of a range-resi-
dent individual should show a clear asymptote.

Once range-residency has been verified, the next step is to fit 
a series of range-resident movement models to the data, such as 
the IID, Ornstein-Uhlenbeck (OU; Uhlenbeck & Ornstein, 1930), 
and OU-Foraging (OUF; Fleming et al., 2014b,c) processes. Model 
selection should then be employed to identify the best model for 
the data (Fleming et al., 2014c, Fleming, Subaşi, et al., 2015). The 
selected model should then be visually compared to the variogram 
to ensure that the model is capturing the key features in the data. 
Models that fail to converge, or that do not provide a reasonable fit 
to the data are another indication that HR analysis may be inappro-
priate (Calabrese et al., 2016).

With a fitted, selected movement model in hand, AKDE HR 
estimates can then be calculated, and these can be used to obtain 
BC estimates and CIs. These overlap estimates may either be the 
final product of the analysis or be used in subsequent analyses. 
Importantly, the confidence intervals attached to each BC estimate 
can be straightforwardly propagated into derived quantities, such as 
the mean overlap within a group, which can facilitate testing hypoth-
eses on similarity or differences among groups of interest. While 
the workflow we describe involves several steps, the ctmm pack-
age and graphical user interface (Dong et al., 2017) streamline this 
procedure. A full example of the workflow is shown in Supporting 
Information Appendix B.

2.4 | Simulation study

To examine the statistical properties of the BC, and the coverage of 
our CIs, we simulated tracking data with variable sampling durations 
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and frequencies. Data were simulated based on pairs of both IID 
processes, and OUF processes (Fleming et al., 2014b,c), parameter-
ized such that the true overlap between these pairs was fixed at 0.5. 
Simulating from an OUF process generates relocations that feature 
autocorrelated positions and velocities as well as restricted space 
use and are representative of modern GPS tracking data commonly 
used in HR analyses (Fleming & Calabrese, 2017).

Importantly, the timescale over which autocorrelation in position 
decays, τp (also termed the HR crossing time; Calabrese et al., 2016), 
is a key parameter for HR estimation (Noonan et al., in review). 
Formally, τp can be quantified from the data as the timescale over 
which an individual's positional autocorrelation decays by a factor of 
1

e
, and its movement process reverts to the mean location (Fleming 
& Calabrese, 2017; Fleming, Fagan, et al., 2015). The duration of the 
observation period (T), in relation to τp, will thus dictate the effective 
sample size (ne) of a dataset via

which may be interpreted as the approximate number of range 
crossings that occurred during the sampling period. We tailored our 
simulations according to their relative effects on ne. These were:

(i)	  �Sampling duration. Observations were recorded eight times/
day, and we manipulated sampling duration (ranging from 1 to 
4,096 days in a doubling series). For OUF simulations, the HR 
crossing time was set to 1 day, and the velocity autocorrelation 
timescale to 1/5 of a day. Notably, this parameterization was such 
that, in these simulations, the sampling duration in days exhibited 
a 1:1 relationship with ne.

(ii)	� �Sampling frequency. Here, the sampling duration was fixed at 
32 days, and we manipulated the sampling frequency (ranging 
from 1 to 1,024 fixes/day in a doubling series). Again, for the OUF 
process, HR crossing time was set to 1 day, and the velocity auto-
correlation timescale to 1/5 of a day. The fixed sampling duration 
in these simulations resulted in ne being fixed at 32, irrespective 
of variation in the sampling frequency.

We then compared the accuracy of the underlying HR es-
timates, the accuracy of the estimated overlap, and the realized 
coverage of the confidence intervals. Results were averaged over 
1,000 simulations per manipulation. The computations were con-
ducted on the Smithsonian Institution High Performance Cluster 
(SI/HPC).

2.5 | Empirical study

We demonstrate the functionality of this method using GPS 
data from Mongolian gazelles. Mongolian gazelles are medium-
sized herbivores that cross their ranges on seasonal timescales 
(Fleming et al., 2014b,c). Positional data for 36 Mongolian gazelle 
were collected in Mongolia's Eastern Steppe between 2007 and 
2011 (Fleming et al., 2014a). Both variogram analysis (Fleming 

et al., 2014c) and model selection (Calabrese et al., 2016) were 
used to confirm that there was evidence of range-residency in 
the data. From these diagnostic checks, 13 individuals showed no 
signs of range-resident behaviour, and we restricted our analy-
ses to the 23 range-resident individuals. HR estimation was then 
carried out using KDE and AKDE as described above. We then 
computed all pairwise BCs ± 95% CIs on the KDE and AKDE es-
timates. Notably, the long HR crossing timescales (x̄ = 111.5 days; 
range = 8.0–443.2), and comparatively short tracking durations 
(x̄ = 381.0 days; range = 67.2–755.0), here produced a mean ne of 
6.1 (range = 0.7–24.6). This is a regime where the negative bias of 
conventional KDE is known to have serious implications for HR 
estimates on autocorrelated data (Fleming & Calabrese, 2017).

2.5.1 | Downstream analyses

To further highlight the utility of these confidence intervals, 
we used the estimated overlap to quantify the edges of a spa-
tial interaction network (Wey et al., 2008). As point estimates 
were accompanied by CIs, we were able to subset edges into two 
categories:

(i)	 �Supported. Well-supported edges were identified as cases where 
two individuals exhibited overlapping space use, with a minimum 
CI that was greater than 0.01—that is, there was a 95% certainty 
that the overlap was ≥0.01

(ii)	 �Unsupported. Unsupported edges were identified as cases 
where the point estimate suggested overlapping space use, but 
with a minimum CI that was less than 0.01—that is, there was 
insufficient evidence to be certain that the overlap differed sig-
nificantly from 0.

We then quantified a number of commonly used diagnostics (i.e., 
network density, mean path length, and closeness centrality; Wey 
et al., 2008), to investigate how these might differ when the network 
was based only on statistically supported edges vs. the inclusion of un-
supported edges.

All analyses were conducted in the R environment (R Core 
Team, 2016), using the methods implemented in the package ctmm 
(Calabrese et al., 2016).

3  | RESULTS

3.1 | Simulation results

3.1.1 | Asymptotic properties of the BCss

Simulations revealed that for IID data, both AKDE and KDE HR esti-
mates provided identical results and were relatively unbiased except 
at very small sample sizes (Figure 1a). The resulting overlap was also 
identical between estimators, and increasing the number of fixes, 
by either increasing the sampling duration (Figure 1b) or frequency 
(Figure 1e), had the expected effect of increasing the accuracy of the 

(23)ne≈
T

τp

,
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overlap estimate and decreasing the uncertainty. Notably, the CIs on 
the BC offered reasonable coverage of the true overlap across all 
sampling regimes, albeit with some persistent negative bias at large 
sample sizes (Figure 1c,f). This was the result of bias in the BC decay-
ing too slowly relative to the variance (see Supporting Information 
Appendix A.3).

For autocorrelated data in contrast, AKDE 95% HR estimates 
were generally accurate across the range of sample durations 
(Figure 2a) and frequencies (Figure 2d) we simulated, whereas KDE 
HR estimates were severely biased for all but the largest datasets. 
As a result, while the estimated overlap between AKDE and KDE es-
timates both converged to the truth as sampling duration increased 
(Figure 2b), asymptotic consistency for KDE estimates was severely 
delayed. Furthermore, increasing the sampling frequency increased 
the negative bias in overlap estimates derived from KDE, but, ap-
propriately, did not influence overlap estimates based on AKDE 
(Figure 2e).

The coverage of 95% CIs for the KDE-derived overlap esti-
mates was severely biased under all of the scenarios we tested 
(Figure 2c,f). In contrast, the coverage of CIs on the AKDE esti-
mates consistently provided close to nominal coverage of the true 
overlap.

3.1.2 | Comparability of estimates

Our baseline simulation study controlled the effect of the movement 
parameters by assuming the individuals exhibited identical movement 
strategies and were sampled at the exact same times. Under these 
conditions, the improved accuracy of AKDE HRs estimates resulted in 
more accurate overlap estimates, with 95% CIs that provided close to 
nominal coverage (Figure 3a). There are realistic complications to our 
basic simulation strategy, however, including cases where individuals 
are subject to the same sampling design, but exhibit different move-
ment strategies, and cases where both movement strategies and sam-
pling designs differ. Importantly, we found that AKDE-based overlap 
still provided reasonable coverage for both of these cases (Figure 3c,e). 
In contrast, because of the differential bias in KDE HR estimates, the 
estimated overlap differed substantially between each of these sce-
narios, and in every case failed to provide coverage of the true value 
(Figure 3b,d,f).

3.2 | Empirical case study

Consistent with our simulated findings of negative bias in KDE HR 
and BC estimates at mid to low ne on autocorrelated data, empirical 

F I G U R E  1    The asymptotic properties of KDE and AKDE HR estimators (a and d) and the BC (b and e) for simulated, IID data, as well as 
the coverage of the CIs (panels c and f), as a function of sampling duration (top row) and frequency (bottom row). In all panels, the dashed 
horizontal lines depict the truth, the solid line the mean point estimate, and the shaded regions the 95% CIs
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AKDE HR estimates were larger than KDE estimates for all pairs 
(Figure 4a). Median pairwise overlap between the 276 pairs of indi-
viduals was 0.66 (95% CI 0.58–0.76) when the overlap was estimated 
from AKDE HR estimates, but fivefold lower when estimated from 
KDE estimates (median = 0.13; 95% CI 0.06–0.22).

The severe negative bias of KDE-derived overlap was persistent 
across all individuals. This can be illustrated in a specific example, 
where the KDE HR estimates resulted in an estimated overlap of 
0.02 (95% CI 0.01–0.03), whereas the AKDE HRs resulted in an over-
lap of 0.80 (95% CI 0.22–0.99). Visual inspection of the range esti-
mates for these individuals revealed substantial negative bias in the 
KDE HR, whereas the AKDE HR was larger, with appropriately wide 
CIs considering the small ne of c. 4 for each HR estimate (Figure 4b,c).

3.2.1 | Downstream analyses

As these overlap estimates were accompanied by confidence inter-
vals, the uncertainty can be used to inform downstream analyses. 
For instance, a spatial network analysis based on the estimated 
overlap revealed 461 edges of variable strength (Figure 5). Of these, 
275 were well supported, whereas 186 had no statistical support. 
We found that basing the network off of all possible edges, vs. 
only those edges with statistical support, influenced its properties 

and any potential biological inferences that would be derived from 
it. For instance, network density was reduced from 0.86 to 0.63 
when the analysis was restricted to only the well-supported edges. 
Furthermore, only utilizing statistically supported edges increased 
the mean path length from 1.13 to 1.39. Interestingly, despite de-
creasing density and increasing the mean path length, constructing 
the network based on only well-supported edges resulted in a two-
fold increase in the closeness centrality compared to the network 
constructed with both supported and unsupported edges (0.45 vs. 
0.23, respectively).

4  | DISCUSSION

Despite the routine nature of estimating overlapping space use 
(e.g., Berger & Gese, 2007; Dougherty et al., 2018; Frère et al., 
2010; Sanchez & Hudgens, 2015), there exists no formal inferential 
framework for this analysis. This is largely due to the inherent dif-
ficulties associated with HR estimation (Fieberg & Börger, 2012) and 
exacerbated by the historical lack of CIs on both HR and overlap 
estimates. As a solution, we have demonstrated how AKDE HR esti-
mates (Fleming & Calabrese, 2017; Fleming, Fagan, et al., 2015) can 
serve as a reliable foundation on which to base statistical inference. 

F I G U R E  2    The asymptotic properties of KDE and AKDE HR estimators (a and d) and the BC (b and e) for simulated, autocorrelated 
tracking data, and the coverage of the CIs (c and f), as a function of sampling duration (top row), and frequency (bottom row). In all 
panels, the dashed horizontal lines depict the truth, the solid line the mean point estimate, and the shaded regions the 95% CIs. Notably, 
convergence to the truth was much slower for KDE, and the coverage of KDE's CIs was far from appropriate in all cases
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F I G U R E  3    HR and overlap estimates 
for two simulated individuals with a 
true overlap of 0.50. In all panels, the 
dashed circles depict the true 95% 
areas, the solid black lines the estimated 
95% areas, and the grey lines the 95% 
CIs on the area estimates. In the first 
row, relocations were simulated from 
OUF models with identical movement 
parameters and sampling times. In the 
second row, sampling was held consistent, 
but the individual plotted in yellow had 
a HR crossing time of 1 week vs. 1 day 
for the individual in red. In the third 
row, movement again differed between 
individuals, but here, the individual in 
yellow was sampled once every 30 min vs. 
once every 3 hrs for the individual in red. 
Note how in all cases AKDE-based overlap 
estimates were relatively consistent and 
provided coverage of the true overlap, 
whereas KDE-based overlap estimates 
varied substantially and consistently failed 
to provide coverage of the truth
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F I G U R E  4    (a) The relationship between pairwise estimates of the BC for Mongolian gazelle, computed from KDE and AKDE HR 
estimates. The dashed 1:1 line depicts parity between these. Note how all cases fall above this line, highlighting how AKDE-derived BC 
suggests more overlap than KDE-derived BC. An example of this discrepancy is depicted in (b), with AKDE BC suggesting extensive overlap 
0.80 (0.22–0.99), whereas in (c), the negative bias in KDE propagates to produce a biased estimate of the overlap 0.02 (0.01–0.03). Crucially, 
with effective sample sizes of c. 4 for each HR estimate, the CIs approximated from the AKDE estimates were appropriately wide, vs. KDE's 
deceivingly narrow CIs
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In addition, we have implemented a small-sample-size bias correc-
tion for the BC and derived well-behaved, approximate CIs on the 
point estimate. Collectively, these advances permit researchers to 
accurately quantify HR overlap, even when sampling strategies and 
underlying movement parameters differ among groups being com-
pared, and test whether any observed differences are statistically 
meaningful.

4.1 | Home range and overlap estimation: an 
intrinsic relationship

A crucial component of any statistical inference is having compara-
ble measures on which to base analyses. Overlap is typically condi-
tional on HR estimates (Fieberg & Kochanny, 2005; Millspaugh et al., 
2004), which are themselves estimated from animal tracking data. 
As overlap estimation relies on at least three separate estimates 
(two HR estimates, and their overlap), it follows that this analysis is 
particularly vulnerable to issues of estimator bias. Accurate HR esti-
mation is a deceptively challenging problem, however, as autocorre-
lation (Fleming, Fagan, et al., 2015), small-sample-size bias (Fleming 
& Calabrese, 2017), and sampling irregularities (Fleming et al., 2018; 
Frair et al., 2010) will significantly influence any statistical analyses 
applied to animal tracking data. More subtly, even identical sampling 
strategies can still produce differentially biased HR estimates if the 
underlying parameters of movement differ markedly between in-
dividuals (Fleming & Calabrese, 2017: Noonan et al., in review). As 
these are nearly ubiquitous aspects of animal tracking data, accu-
rate overlap estimation requires statistical methods that can handle 
these complications, without introducing artifactual differences due 
purely to estimator bias.

In this respect, our simulation study revealed that, for autocor-
related data, KDE regularly underestimated HR sizes (Fleming & 

Calabrese, 2017; Noonan et al., in review), and this negative bias was 
directly propagated to overlap estimates. For KDE, the amount of 
data required to achieve an accurate measure of overlap was very 
large, and most empirical cases are likely to underestimate the true 
overlap (Fieberg & Kochanny, 2005). In contrast, AKDE HRs were 
larger, but significantly more accurate, which translated to more 
accurate overlap estimates. Crucially, when we varied the sampling 
design and movement strategies between the individuals we were 
comparing, AKDE-based estimates provided reliable coverage of the 
true overlap, whereas this was not the case for KDE. Consistent with 
the results of our simulation study, empirical AKDE HRs from au-
tocorrelated Mongolian gazelle GPS data were ca. twice as large as 
KDE estimates. This resulted in the median pairwise overlap being 
fivefold larger when based on AKDE vs. KDE. Had an analysis been 
based on the biased KDE estimates, one would have erroneously 
concluded that there was little spatial overlap in this system, whereas 
the results based on AKDE's more rigorous estimates revealed these 
individuals actually exhibited extensive overlap. Although these em-
pirical estimates could not be compared to a truth, as per our simula-
tions, this finding is also consistent with a recent analysis by Noonan 
et al. (in review). In a large-scale comparative study encompassing 
369 individuals across 30 species, they found that AKDE 95% HR 
estimates consistently included c. 95% of holdout observations, 
whereas KDE estimates included c. 92% at high ne (>256), but only 
c. 75% at low ne. This means AKDE's larger estimates are accurate, 
while those produced by conventional KDE on the same data are 
consistently, and often grossly, too small. The net result is that AKDE 
provides a solid foundation for estimating overlap under realistic 
sampling regimes, resulting in accurate overlap estimates that can 
validly be compared across studies.

As described above, a fundamental component of estimating HR 
overlap is having comparable measures on which to base analyses. 

F I G U R E  5    Figure depicting (a) the 
GPS locations for 23 Mongolian gazelle 
tracked in Mongolia's Eastern Steppe; (b) a 
network diagram with edge weights based 
on overlap values; and (c) an example 
case of two HR estimates where the 
point estimate of the overlap suggests a 
connection, but the CIs on the estimates 
suggest that connection might not be 
statistically significant. The dashed 
lines in (b) depict pairs where the point 
estimate suggests a connection, but with 
CIs that include 0.01 and thus may not be 
statistically significant. The transparency 
of the lines is proportional to the point 
estimate of the BC. The connection 
depicted in red on the right-hand side of 
(b) corresponds to the pair in (c)
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Notably, in this study, we consider range estimators in the sense of 
Burt (1943), which estimate a long-run space use, assuming the focal 
individual does not change its movement process (Fleming, Fagan, 
et al., 2015). This includes KDEs, minimum convex polygons (MCP; 
Mohr, 1947), and time-naive local convex hulls (LoCoH) (Getz et al., 
2007). Also of interest are occurrence distribution estimators such 
as the Brownian bridge (Horne, Garton, Krone, & Lewis, 2007) or 
t-LoCoH (Lyons, Turner, & Getz, 2013) which quantify uncertainty in 
the animal's location during the sampling period, including times not 
sampled. Crucially, this uncertainty vanishes in the limit where both 
the sampling interval and telemetry error approach zero. Although 
these two mathematically distinct classes of distributions have been 
historically conflated under the umbrella term of “utilization dis-
tributions,” they have very different interpretations and use cases 
(Fleming, Fagan, et al., 2015). Consequently, overlap based on occur-
rence estimates has a very different meaning from overlap based on 
range estimates and is beyond the scope of the present work.

We also note that extending our bias correction and CIs to other 
HR estimators, such as MCP, LoCoH, or non-GRF KDE bandwidth 
optimizers, is not a tractable problem. First, our methods are explic-
itly based on the GRF approximation, so they are not consistent with 
non-GRF estimators. Second, the GRF-based methods implemented 
in ctmm are, to our knowledge, the only HR estimators that quan-
tify uncertainty. As an uncertainty estimate is a prerequisite for our 
error propagation techniques, it would not currently be possible to 
adapt our approach to other estimators. Finally, the target distribu-
tions and expectation values of geometric methods such as MCP and 
LoCoH are usually unknown, which makes these estimators incom-
patible with the methods developed here.

4.2 | Properties of the overlap estimator

In addition to utilizing reliable HR estimates, the overlap estimator 
itself should have desirable properties (Fieberg & Kochanny, 2005). 
While several valid estimators exist, the BC (Bhattacharyya, 1943) 
stands out because of its statistical validity, geometric interpretabil-
ity, computational efficiency, and asymptotic consistency. As noted 
by Fieberg and Kochanny (2005), however, the BC is prone to exhib-
iting negative, small-sample-size bias (Djouadi & Snorrason, 1990). 
To correct for this, we derived a small-sample-size bias correction, 
which improved the accuracy of BC estimates (Djouadi & Snorrason, 
1990).

Furthermore, problematic is the historical lack of CIs on over-
lap estimates. Overlap is an estimate derived from data and should 
be accompanied by a measure of the uncertainty (Pawitan, 2001). 
Without this, one cannot properly infer the importance of a given 
estimate. As a solution, we have derived CIs on the BC based on 
a GRF approximation. Using simulated data, we demonstrated how 
this implementation will provide reasonable coverage of the true 
overlap. We note, however, that, while generally well behaved, there 
was some persistent negative bias in the coverage of these CIs. The 
biased coverage is likely the result of the bias in the BC point es-
timate decaying too slowly relative to the variance as ne increased 

(Figure A.2). With asymptotically efficient estimators, this ratio 
would decay at a rate of 1∕

√

N or better, whereas here it increases 
at a rate of c. 

√

N. As such, their coverage should be treated with 
caution, particularly at large ne. Furthermore, because we approxi-
mate the HRs as Gaussian when estimating uncertainty, the CIs may 
exhibit unintended behaviour when the overlap is dependent on 
non-Gaussian features.

Despite these limitations, well-behaved CIs for HR overlap is a 
novel feature and permits true statistical inference on overlap esti-
mates. For instance, these CIs can be applied to a reference value of in-
terest (e.g., the mean overlap between individuals of the same species 
studied elsewhere) to test for significant differences between these, 
as opposed to relying on ad hoc comparisons. Additionally, if overlap is 
being used to inform subsequent analyses, CIs can be used to improve 
these. For example, we found that differentiating between the 275 
overlap estimates that were well supported by the data and the 186 
that may have been artifactual significantly influenced the properties 
of an interaction network of Mongolian gazelle. When based on all 
possible edges, the network suggested a larger number of edges, but 
with a low closeness centrality. Conversely, when based only on edges 
with statistical support, the network density decreased but closeness 
increased. The supported and unsupported networks would each lead 
to a unique set of biological interpretations, with only the former being 
supported by the data.

5  | CONCLUSION

In conclusion, we have developed the first inferential framework 
for HR overlap tailored for the specific needs of ecologists that is 
both statistically valid and computationally efficient. Collectively, 
the more accurate and comparable HR estimates provided by AKDE 
(Fleming & Calabrese, 2017; Fleming, Fagan, et al., 2015; Noonan 
et al., in review) and our novel bias correction and CIs on the BC 
permit rigorous overlap estimation. This method is now available 
via command line interface through the ctmm package (Calabrese 
et al., 2016) or through the web-based graphical user interface at  
ctmm.shinyapps.io/ctmmweb/ (Dong et al., 2017).
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