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Abstract
1.	 Despite	the	routine	nature	of	estimating	overlapping	space	use	in	ecological	research,	
to	date	no	formal	inferential	framework	for	home	range	overlap	has	been	available	to	
ecologists.	Part	of	this	issue	is	due	to	the	inherent	difficulty	of	comparing	the	esti-
mated	home	ranges	that	underpin	overlap	across	individuals,	studies,	sites,	species,	
and	times.	As	overlap	is	calculated	conditionally	on	a	pair	of	home	range	estimates,	
biases	in	these	estimates	will	propagate	into	biases	in	overlap	estimates.	Further	com-
pounding	the	issue	of	comparability	in	home	range	estimators	is	the	historical	lack	of	
confidence	intervals	on	overlap	estimates.	This	means	that	it	is	not	currently	possible	
to	determine	if	a	set	of	overlap	values	is	statistically	different	from	one	another.

2.	 As	a	solution,	we	develop	the	first	rigorous	inferential	framework	for	home	range	over-
lap.	Our	framework	is	based	on	the	autocorrelated-Kernel	density	estimation	(AKDE)	
family	of	home	range	estimators,	which	correct	for	biases	due	to	autocorrelation,	small	
effective	sample	size,	and	irregular	sampling	in	time.	Collectively,	these	advances	allow	
AKDE	estimates	to	validly	be	compared	even	when	sampling	strategies	differ.	We	then	
couple	the	AKDE	estimates	with	a	novel	bias-corrected	Bhattacharyya	coefficient	(BC)	
to	quantify	overlap.	Finally,	we	propagate	uncertainty	in	the	AKDE	estimates	through	
to	overlap	and	thus	are	able	to	put	confidence	intervals	on	the	BC	point	estimate.

3.	 Using	 simulated	data,	we	demonstrate	how	our	 inferential	 framework	provides	
accurate	overlap	estimates,	and	reasonable	coverage	of	the	true	overlap,	even	at	
small	sample	sizes.	When	applied	to	empirical	data,	we	found	that	building	an	in-
teraction	network	for	Mongolian	gazelles	Procapra gutturosa	based	on	all	possible	
ties,	vs.	only	those	ties	with	statistical	support,	substantially	influenced	the	net-
work’s	properties	and	any	potential	biological	inferences	derived	from	it.

4.	 Our	inferential	framework	permits	researchers	to	calculate	overlap	estimates	that	can	
validly	be	compared	across	studies,	sites,	species,	and	times,	and	test	whether	observed	
differences	are	statistically	meaningful.	This	method	is	available	via	the	R	package	ctmm.
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1  | INTRODUC TION

Ecologists	have	long	been	interested	in	patterns	and	drivers	of	animal	
space	use	(Brown	&	Orians,	1970;	Burt,	1943;	Jetz,	2004).	Decisions	
on	what	areas	to	occupy	can	influence	fitness	through	a	wide	range	
of	 pathways	 such	 as	 foraging	 efficiency	 (Mitchell	&	Powell,	 2012)	
or	predator–prey	dynamics	(Mitchell	&	Lima,	2002),	and	even	drive	
evolutionary	trajectories	(Lukas	&	Clutton-Brock,	2013).	Related	to	
this	 is	 the	 question	 of	 overlapping	 space	 use	 between	 individuals	
and/or	populations.	Quantifying	overlap	can	provide	an	informative	
metric	 for	 testing	hypotheses	on	 interspecific	competition	 (Berger	
&	Gese,	2007),	territoriality	(Grant,	Chapman,	&	Richardson,	1992),	
and	 mating	 systems	 (Powell,	 1979).	 Furthermore,	 overlap	 can	 be	
used	to	underpin	analyses	of	social	network	structure	(Frère	et	al.,	
2010)	 and	 contact	 rates,	 with	 implications	 for	 disease	 transmis-
sion	(Dougherty,	Seidel,	Carlson,	Spiegel,	&	Getz,	2018;	Sanchez	&	
Hudgens,	2015).	Trends	in	overlapping	space	use	are	also	routinely	
used	in	determining	allometric	scaling	laws	(Grant	et	al.,	1992;	Jetz,	
2004).	The	rapid	increase	in	both	the	availability	and	quality	of	track-
ing	data	in	recent	years	(Kays,	Crofoot,	Jetz,	&	Wikelski,	2015)	has	
made	the	concept	of	home	range	(HR)	overlap	increasingly	relevant.	
Ecologists	are	now	in	a	position	to	address	overlap-related	questions	
for	a	larger	number	of	species	and	individuals,	in	more	ecosystems,	
and	with	more	accurate	data	than	ever	before.

Despite	these	advances,	a	formal	 inferential	framework	for	HR	
overlap	 is	 still	 lacking.	Overlap	 is	 typically	 quantified	 by	 the	 first- 
estimating	HRs	from	tracking	data	and	then	applying	an	overlap	met-
ric	to	the	range	estimates	 (Fieberg	&	Kochanny,	2005;	Millspaugh,	
Gitzen,	Kernohan,	 Larson,	&	Clay,	 2004).	A	wide	 range	of	overlap	
metrics	have	been	proposed	 in	 the	 literature,	 spanning	 the	gamut	
from ad hoc	indices	to	more	formal	measures.	These	different	met-
rics	 have	 contrasting	 properties	 and	 can	 produce	 highly	 different	
overlap	estimates	on	the	same	data	(see	Fieberg	&	Kochanny,	2005;	
Millspaugh	et	al.,	 2004).	 Further	 compounding	 this	 problem	 is	 the	
inherent	 difficulty	 of	 comparing	 the	 estimated	HRs	 that	 underpin	
overlap	across	studies,	sites,	species,	and	times	(Fleming	&	Calabrese,	
2017).	There	is	broad	agreement	in	the	literature	that	HR	estimates	
based	on	different	sampling	strategies	are	difficult	 to	compare,	as	
they	may	be	exposed	to	different	degrees	of	bias	(Fieberg	&	Börger,	
2012;	Fleming	et	al.,	2018;	Frair	et	al.,	2010).	More	subtly,	even	iden-
tical	 sampling	 strategies	 can	 still	 produce	 differentially	 biased	HR	
estimates	 if	 the	underlying	parameters	of	movement	differ	among	
individuals	in	the	comparison	(Fleming	&	Calabrese,	2017).	As	over-
lap	is	calculated	conditionally	on	a	pair	of	HR	estimates,	biases	in	the	
HR	estimates	will	propagate	into	biases	in	overlap	estimates	(Fieberg	
&	Kochanny,	2005).	It	follows	then	that	differential	biases	in	HR	es-
timates	 among	different	 groups	of	 interest	will	 tend	 to	 propagate	
into	differential	biases	in	overlap	estimates,	rendering	comparisons	
difficult	to	interpret	and	potentially	unreliable.

Additionally,	none	of	the	overlap	metrics	of	which	we	are	aware	
come	 equipped	 with	 confidence	 intervals	 to	 quantify	 the	 uncer-
tainty	in	the	estimates.	This	means	that	it	is	currently	not	possible	to	
determine	if	a	set	of	overlap	values	is	statistically	different	from	one	

another	or	from	a	reference	value	of	interest.	To	see	this,	consider	a	
case	where	one	wishes	to	compare	two	overlap	estimates	from	two	
pairs	of	 individuals:	0.35	and	0.55.	 If	the	95%	confidence	intervals	
for	each	estimate	are	disjoint,	then	we	may	conclude	that	the	two	
pairs	 have	 significantly	 different	 measures	 of	 overlap.	 If	 the	 95%	
confidence	intervals	are	not	disjoint,	then	the	point	estimates	may	
not	 be	 significantly	 different.	 In	 other	words,	 without	 confidence	
intervals,	 one	 cannot	properly	 interpret	differences	between	esti-
mates	(Pawitan,	2001).

Here,	we	develop	the	first	 inferential	 framework	for	HR	over-
lap	 by	 building	 on	 previous	 work	 in	 quantifying	 overlap	 (Fieberg	
&	Kochanny,	 2005)	 and	 by	 leveraging	 recent	 advances	 in	HR	 es-
timation	 (Fleming	&	Calabrese,	2017;	Fleming,	Fagan,	et	al.,	2015;	
Fleming	et	al.,	2018).	We	base	our	approach	on	the	Bhattacharyya	
coefficient	(BC;	Bhattacharyya,	1943,	also	called	the	Bhattacharyya	
affinity),	 which	 has	 a	 formal	 basis	 as	 a	 measure	 of	 similarity	 be-
tween	 two	probability	distributions	and	 is	 straightforward	 to	cal-
culate	 and	 interpret	 (Fieberg	 &	 Kochanny,	 2005).	We	 couple	 the	
BC	 with	 autocorrelated-Kernel	 density	 estimation	 (AKDE)	 as	 a	
general	HR	estimator	(Fleming	&	Calabrese,	2017).	Basing	overlap	
estimation	on	AKDE	has	two	primary	advantages.	First,	AKDE	cor-
rects	for	bias	due	to	autocorrelation	(Fleming,	Fagan,	et	al.,	2015),	
ordinary	 small-sample-size	 bias	 (Fleming	&	Calabrese,	 2017),	 and	
temporal	sampling	bias	(Fleming	et	al.,	2018).	The	net	result	is	that	
AKDE	HR	estimates	can	validly	be	compared	across	studies,	sites,	
species,	and	times,	even	when	sampling	strategies	and	underlying	
movement	parameters	differ	(Fleming	&	Calabrese,	2017;	Fleming	
et	al.,	2018;	Noonan	et	al.,	 in	 review).	Second,	 the	error	propaga-
tion	techniques	used	to	develop	confidence	intervals	on	AKDE	area	
estimates	(Fleming	&	Calabrese,	2017)	can	be	extended	to	overlap	
estimation,	allowing	us	to	develop	confidence	intervals	for	overlap	
estimates.	 In	addition,	overlap	estimates	can	exhibit	negative	bias	
(Fieberg	&	Kochanny,	2005),	where	part	of	this	problem	is	the	result	
of	small-sample-size	bias	in	the	BC	(Djouadi	&	Snorrason,	1990).	As	
a	solution,	we	derive	an	approximate,	first-order	bias	correction	to	
the	BC.

We	use	a	combination	of	simulated	and	empirical	data	to	demon-
strate	the	power	of	our	inferential	framework.	First,	based	on	sim-
ulations,	 we	 study	 the	 bias	 in	 BC	 estimates	 as	 a	 function	 of	 the	
amount	of	autocorrelation	 in	 the	data	and	of	 the	effective	sample	
size,	both	in	cases	where	the	underlying	HR	estimators	account	for	
these	 biases	 (AKDE),	 and	 where	 they	 do	 not	 (conventional	 KDE;	
Worton,	1989).	We	use	a	similar	approach	to	quantify	the	realized	
coverage	of	our	confidence	intervals.	We	then	show	how	our	frame-
work	can	be	used	to	accurately	estimate	overlap,	even	when	individ-
uals	exhibited	different	movement	strategies	and/or	were	subject	to	
completely	different	sampling	designs,	whereas	conventional	meth-
ods	fail.	Finally,	we	show	how	our	approach	can	be	used	in	“down-
stream”	applications	that	depend	on	overlap.	Specifically,	we	build	
an	interaction	network	(Wey,	Blumstein,	Shen,	&	Jordán,	2008)	for	
Mongolian	gazelles	Procapra gutturosa	where	edges	are	established	
only	between	individuals	whose	overlap	estimates	received	statisti-
cal	support.
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2  | MATERIAL S AND METHODS

Our	inferential	framework	consists	of	bias-corrected	HR	estimates,	
a	bias-corrected	BC	estimator,	and	confidence	 intervals	on	the	BC	
point	estimate.	We	describe	each	of	these	elements	in	turn.	We	then	
describe	how	our	framework	can	be	used	in	practice	via	the	ctmm R 
package	 by	 extending	 the	 workflow	 for	 HR	 analysis	 described	 in	
Calabrese,	 Fleming,	 and	Gurarie	 (2016)	or	 through	 the	web-based	
graphical	 user	 interface	 at	 ctmm.shinyapps.io/ctmmweb/	 (Dong,	
Fleming,	&	Calabrese,	2017).

2.1 | Home range estimation

At	a	minimum,	 calculating	overlap	 requires	a	pair	of	HR	estimates	
(Fieberg	&	Kochanny,	2005;	Millspaugh	et	al.,	2004).	More	generally,	
comparisons	of	overlap	among	different	groups,	species,	places,	or	
times	may	also	be	of	interest.	Nonetheless,	as	overlap	estimates	are	
conditional	on	estimated	HRs,	those	underlying	HR	estimates	must	
be	directly	 comparable	across	 the	different	groups	 the	 researcher	
wishes	 to	 evaluate.	 Unfortunately,	 HR	 estimates	 are	 subject	 to	 a	
number	of	biases,	and	differences	in	either	sampling	schedule,	under-
lying	movement	parameters,	or	both	can	expose	different	data	sets 
to	 different	 degrees	 of	 bias	 (Fieberg	 &	 Börger,	 2012;	 Fleming	 &	
Calabrese,	2017).	Datasets	characterized	by	one	of	more	of	 these	
forms	of	bias,	which	are	the	norm	in	practice,	can	thus	render	com-
parison	of	HR	estimates	across	groups	of	interest	highly	misleading.	
The	propagation	of	differentially	biased	HR	estimates	into	differen-
tially	biased	overlap	estimates	has	been	a	key	impediment	to	the	de-
velopment	of	a	reliable	inferential	framework	for	HR	overlap.

In	decreasing	order	of	importance,	the	three	main	sources	of	bias	
in	 HR	 estimation	 are	 unmodeled	 autocorrelation	 (Fleming,	 Fagan,	
et	al.,	 2015),	 small	 effective	 sample	 sizes	 (Fleming	 &	 Calabrese,	
2017),	 and	 temporally	 biased	 sampling	 (Fleming	 et	al.,	 2018).	 The	
magnitude	of	the	negative	bias	in	HR	estimates	that	results	from	as-
suming	the	data	is	independent	and	identically	distributed	(IID)	when,	
in	 fact,	 they	are	autocorrelated	can	be	arbitrarily	 large	 (Fleming	&	
Calabrese,	2017).	All	else	being	equal,	the	bias	will	increase	with	the	
strength	of	autocorrelation	in	the	data.	In	contrast,	small	sample	size	
bias	will	be	estimator-specific	and	will	tend	to	be	of	smaller	magni-
tude	than	autocorrelation-related	bias	for	modern	GPS	data.	For	ex-
ample,	KDEs	based	on	the	conventional	Gaussian	reference	function	
(GRF)	approximation	tend	to	overestimate	HR	areas	at	small	sample	
size	(Fleming	&	Calabrese,	2017).	Temporally	biased	sampling	occurs	
when	some	times	are	oversampled	while	others	are	undersampled	
(Frair	et	al.,	2010),	which	can	produce	data	that	are	not	representa-
tive	of	the	individual's	space	use	(Fleming	et	al.,	2018).	Bias	due	to	
nonrepresentative	 sampling	 in	 time	will	 tend	 to	 increase	with	 the	
degree	of	unevenness	in	the	sampling	schedule.

These	three	sources	of	bias	must	be	mitigated	to	validly	compare	
HR	estimates,	and,	by	extension,	to	validly	compare	overlap	estimates.	
We	 now	 describe	HR	 estimation	methods	 that,	when	 used	 in	 com-
bination,	 largely	corrects	 these	biases.	Autocorrelated-KDE	 is	a	gen-
eralization	 of	 the	 GRF-KDE	 (Fleming,	 Fagan,	 et	al.,	 2015).	 The	 core	

advance	in	AKDE	is	that	the	optimization	of	the	smoothing	bandwidth,	
σB,	explicitly	accounts	for	autocorrelation	in	the	data.	Specifically,	an	
autocorrelated	 movement	 model	 is	 used	 to	 represent	 the	 autocor-
relation	structure	of	the	data	in	the	bandwidth	optimization	(Fleming	
et	al.,	 2014c;	 Fleming,	 Subaşi,	 &	 Calabrese,	 2015).	 Model	 selection	
(detailed	below)	can	be	used	to	arrive	at	an	appropriate	model	for	the	
data’s	 autocorrelation	 structure	 (Calabrese	 et	al.,	 2016).	 When	 the	
data	exhibit	no	autocorrelation,	the	IID	model	would	be	selected,	and	
AKDE	conditional	on	the	IID	model	is	exactly	equivalent	to	the	well-
known	GRF-KDE.	Recently,	 Fleming	and	Calabrese	 (2017)	derived	a	
small-sample-size,	area-based	correction	that	mitigates	the	tendency	
of	KDEs	based	on	the	GRF	approximation,	 including	AKDE,	 to	over-
smooth	the	data.	Finally,	 (Fleming	et	al.,	2018)	developed	an	optimal	
weighting	scheme,	 termed	“wAKDE,”	 that	 leverages	 the	autocorrela-
tion	 structure	 of	 the	 data	 to	 appropriately	 upweight	 undersampled	
times	 and	 downweight	 oversampled	 times.	 When	 used	 in	 concert,	
these	 innovations	 result	 in	more	 accurate	HR	estimates	 that	 are	 di-
rectly	comparable	across	groups	of	interest.	A	technical	introduction	to	
these	estimators	is	provided	in	Supporting	Information	Appendix	A.1.

2.2 | The Bhattacharyya coefficient

There	are	many	different	measures	which	quantify	the	relative	simi-
larity	 (overlap)	 or	 dissimilarity	 (distance)	 of	 two	 probability	 distri-
butions.	While	both	 types	of	metrics	 can	be	used	 to	describe	 the	
degree	of	shared	space	use	between	individuals,	measures	of	over-
lap	are	used	more	commonly	 in	biological	contexts	 than	measures	
of	distance	(but	see	Kranstauber,	Smolla,	&	Safi,	2016).	In	their	com-
parative	analysis	of	overlap	metrics,	Fieberg	and	Kochanny	 (2005)	
concluded	that	the	BC	and	Volume	of	Intersection	statistic	(VI;	also	
known	 as	 the	 overlap	 coefficient;	 Inman	 &	 Bradley,	 1989)	 were	
the	most	robust	overlap	estimators.	While	these	two	valid	choices	
exist,	we	suggest	that,	for	inferential	purposes,	an	overlap	estimator	
should	satisfy	the	following	criteria:

(i)	 Statistical validity.	 An	 appropriate	 overlap	 estimator	 should	
be	based	on	an	established	measure	of	statistical	distance	or	
divergence	that	satisfies	related	mathematical	properties.

(ii)	 Geometric interpretability.	For	uniform	distributions,	overlap	
should	be	proportional	to	the	area	of	intersection.

(iii)	 Objectivity.	Overlap	should	not	depend	on	ad hoc	parameters	
such	 as	 particular	 isopleths	 (e.g.,	 95%	or	50%)	or	 discretized	
distributions.

(iv)	 Computational efficiency.	Computing	the	overlap	of	two	dis-
tributions	should	scale	efficiently	with	the	sample	size	and	ex-
tent	of	both	distributions.

(v)	 Asymptotic consistency.	 An	 overlap	 estimator	 should	 con-
verge	to	the	true	overlap	in	the	large	sample	size	limit.

(vi)	 Minimal bias.	 An	 overlap	 estimator	 should	 have	 good	 small-
sample-size	behaviour.

(vii)	 Quantifiable uncertainty.	Overlap	is	an	estimate	derived	from	
data	 and	 should	be	accompanied	by	 a	measure	of	 the	 confi-
dence	in	that	estimate	(Pawitan,	2001).

ctmm.shinyapps.io/ctmmweb/
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The	BC	(Bhattacharyya,	1943)	is	a	solid	basis	for	inference	on	HR	
overlap	because	it	satisfies	criteria	(i)–(v),	and	has	the	additional	benefit	
of	being	well	known	to	the	ecological	community	(Fieberg	&	Kochanny,	
2005).	Although	the	VI	also	meets	these	criteria	(Fieberg	&	Kochanny,	
2005),	 approximating	 confidence	 intervals	 on	 the	VI	 for	 the	 case	of	
unequal	variances	presents	severe	difficulties	(Reiser	&	Faraggi,	1999).	
Consequently,	we	base	our	approach	on	the	BC.	The	BC	between	two	
continuous	distributions	p1 and p2	is	given	by

The	BC	 is	 thus	a	 function	of	 the	product	of	 the	two	distributions,	
ranging	 from	 0	≤	BC	≤	1,	 with	 BC	=	0	 only	 when	 p1 and p2	 have	 no	
shared	support	and	BC	=	1	only	when	p1	=	p2.	We	now	turn	our	attention	
to	criteria	 (vi)	and	(vii)	and	derive	a	confidence	 interval	approximation,	
and	bias	correction	that	allow	the	BC	to	satisfy	these	additional	criteria.

2.2.1 | Confidence intervals for the BC

When	measuring	the	overlap	of	two	HRs,	the	BC,	as	given	above,	is	a	
point	estimate	of	the	overlap	between	the	two	distributions,	but	does	
not	 capture	any	of	our	uncertainty	 in	 the	HR	estimation	procedure.	
To	address	this	limitation,	we	derive	confidence	intervals	for	the	BC,	
in	the	Gaussian	reference	function	(GRF)	approximation.	AKDE's	first	
step	 involves	 fitting	 stochastic	 movement	 models	 (Fleming,	 Fagan,	
et	al.,	2015)	to	estimate	the	mean	and	covariance	parameters

where	 r(t)	=	(x(t),	y(t))	 denotes	 the	 individual's	 location.	 In	 the	GRF	
approximation,	the	individual	spatial	density	estimates	are	given	by

and	so	the	BC	between	Gaussian	density	estimates	resolves	to

in	 terms	of	 the	arithmetic	and	geometric	means	of	 the	covariance	
matrices

and	the	Mahalanobis	distance	(Mahalanobis,	1936)	between	the	two	
distributions

The	 closely	 related	 Bhattacharyya	 distance	 BD	=	−	log	BC;	
Bhattacharyya	(1946)	is	defined

which	here	resolves	to

Term-by-term	all	components	of	the	BD	are	nonnegative,	with	the	
first	set	of	terms	involving	the	Mahalanobis	distance	being	zero	only	
for	 identical	 mean	 locations,	 and	 the	 second	 set	 of	 terms	 invok-
ing	the	AM-GM	inequality	being	zero	only	for	 identical	covariance	
matrices.

First,	we	propagate	uncertainty	in	the	mean	and	covariance	pa-
rameters	 into	uncertainty	 in	B̂D	 via	 the	delta	method	 (Cox,	 2005)	
to	obtain	VAR[B̂D].	Second,	as	an	improvement	over	asymptotically	
normal	CIs,	and	as	the	BD	roughly	takes	the	form	of	a	square	dis-
tance,	we	 approximate	 the	BD	 statistic	 as	 being	 chi-squared	with	
degrees	of	freedom	equal	to

in	accordance	with	the	chi-square	variance	formula.	We	then	trans-
form	the	BD	CIs	back	into	BC	CIs	via	BC	=	exp(−BD).	Finally,	for	the	
kernel	density	BC	CIs,	we	apply	the	same	χ2	approximation	(9),	but	
with	the	AKDE	point	estimate	for	the	BD	and	the	GRF	estimate	for	
VAR[B̂D].

2.2.2 | Bias correction for the BC

As	 noted	 by	 Fieberg	 and	Kochanny	 (2005),	 overlap	 is	 likely	 to	 be	
negatively	biased	at	small	sample	sizes.	In	addition	to	negative	biases	
in	HR	estimation	driven	by	unmodeled	autocorrelation,	part	of	this	
problem	 is	 the	 result	 of	 small-sample-size	 bias	 in	 the	BC	 (Djouadi	
&	Snorrason,	1990),	which	is	a	common	property	of	asymptotically	
consistent	estimators	(Basu,	1956).	As	a	solution,	here	we	derive	an	
approximate	bias	correction	for	the	BD

which	we	will	also	apply	to	the	AKDE	BD	point	estimate.	Even	if	
the	 two	 distributions	 are	 Gaussian,	 the	 BD	 plug-in	 estimator—
which	calculates	the	BD	directly	by	assuming	that	the	density	es-
timates	 are	 true—is	 severely	 biased.	 This	 bias	 correction	will	 be	
exact	 in	 the	 case	 of	 IID	 processes	 of	 equal	 variance,	 which	 is	
known	 to	be	 solvable	 (Djouadi	&	Snorrason,	1990),	 but	 approxi-
mately	generalized	for	the	movement	processes	we	consider	and	
verified	with	 simulation	 (Supporting	 Information	 Appendix	 A.2).	
Most	of	the	bias	is	due	to	the	fact	that	uncertainty	in	the	centroids	
translates	 strictly	 into	positive	BD,	even	 if	 the	 two	distributions	
are	 identical.	First,	we	address	this	 largest	source	of	bias,	by	de-
composing	the	mean	estimates	 into	their	expectation	values	and	
(mean-zero)	error

whereupon	we	can	express	the	first	expected	BD	term

(1)BC(p1,p2)=
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plus	terms	like	�̂−1�	that	we	ignore	because	ξ	is	mean	zero	and	as-
ymptotically	uncorrelated	with	�̂.	Next,	we	note	the	approximation

which	 is	 exact	 for	many	 stationary	 processes	 (e.g.,	 Fleming	 et	al.,	
2014c),	with	a	proportionality	constant	equal	to	the	effective	sample	
size	of	the	mean.	Therefore,	we	have

when	the	two	covariances	are	similar,	allowing	us	to	here	ignore	the	
biases	in	�̂−1	 .	We	note	that,	 in	general,	this	term	related	to	home-
range	centroid	uncertainty	is	by	far	the	largest	source	of	bias	in	BD	
estimation.	 Furthermore,	 if	 the	 two	 movement	 process	 are	 inde-
pendent	of	each	other,	then	we	have

For	 the	 remaining	 terms	 of	 the	 plug-in	 BD	 estimator,	 we	 require	
some	distributional	assumptions	on	the	covariance	estimates	�̂1,	�̂2, 
and �̂.	We	take	�̂1 and �̂2	to	be	Wishart	distributed	(Wishart,	1928)	
where	effective	sample	sizes	N1 and N2	are	estimated	with	the	pa-
rameters	 (Fleming	&	Calabrese,	2017).	For	 the	average	covariance	
�̂,	 we	 construct	 a	Welch–Satterthwaite	 (Satterthwaite,	 1946)	 like	
approximation	that	is	exact	for	equal	covariances.	If	�̂ were χ2	dis-
tributed,	the	ordinary	Welch–Satterthwaite	approximation	would	fix	
its	degrees	of	freedom	via	the	relationship	between	its	variance	and	
that	of	 its	constituents.	However,	�̂	 is	matrix	valued	and	has	many	
variances.	We	choose	to	conserve	the	trace	variance,	which	is	both	
additive	and	rotationally	invariant:

Next,	the	expected	inverse	estimate	matrix	resolves	to

and	 so	 we	 clamp	 our	 effective	 sample	 size	 estimates	 to	 
N	≥		dim(σ)	+	2,	which	is	the	smallest	discrete	number	of	IID	locations	
with	which	one	can	estimate	properly.	Below	this	value,	the	estimate	
is	likely	not	approximately	Wishart	distributed	and	N	is	likely	not	well	
estimated.	So	by	clamping	N,	we	effectively	clamp	our	bias	correc-
tion.	Next,	the	expected	log-determinant	terms	resolve	to

in	terms	of	the	multivariate	digamma	function	ψd.
Finally,	as	BD	≥	0,	we	debias	the	plug-in	estimator	by	dividing	by	

a	large	number	rather	than	by	subtracting	a	large	number:

which	is	the	same	to	first	order.	This	serves	as	a	first-order	bias	cor-
rection	to	both	the	BD	and	the	BC.

2.3 | Workflow

The	resulting	centerpiece	of	our	 inferential	 framework	 is	a	bias-cor-
rected	 BC	 estimate,	 with	 confidence	 intervals,	 that	 is	 comparable	
across	studies.	To	get	to	that	point,	the	user	must	first	proceed	through	
a	workflow	designed	to	produce	the	best	possible	estimates	from	their	
data,	but	warn	when	such	an	analysis	is	inappropriate.	This	workflow	
builds	on	that	described	in	Calabrese	et	al.	(2016)	for	HR	analysis.

The	first	step	is	ensuring	that	the	data	at	hand	are	appropriate	
for	HR	analysis,	which	means	that	there	must	be	clear	evidence	of	
range-residency.	Data	from	non-range-resident	 individuals	or	from	
range-resident	intervals	that	were	only	briefly	tracked	may	not	sat-
isfy	this	criterion.	When	the	data	do	not	show	evidence	of	range-res-
idency,	 HR	 estimation	 is	 not	 appropriate	 (Calabrese	 et	al.,	 2016;	
Fleming	&	Calabrese,	2017),	which	implies	that	HR	overlap	analysis	
is	 also	 not	 appropriate.	We,	 therefore,	 strongly	 recommend	 start-
ing	with	visual	verification	of	range-residency	via	variogram	analysis	
(Fleming	 et	al.,	 2014b).	 Specifically,	 the	 variogram	of	 a	 range-resi-
dent	individual	should	show	a	clear	asymptote.

Once	range-residency	has	been	verified,	 the	next	step	 is	 to	 fit	
a	 series	 of	 range-resident	movement	models	 to	 the	 data,	 such	 as	
the	 IID,	 Ornstein-Uhlenbeck	 (OU;	 Uhlenbeck	 &	 Ornstein,	 1930),	
and	OU-Foraging	 (OUF;	 Fleming	 et	al.,	 2014b,c)	 processes.	Model	
selection	 should	 then	be	employed	 to	 identify	 the	best	model	 for	
the	 data	 (Fleming	 et	al.,	 2014c,	 Fleming,	 Subaşi,	 et	al.,	 2015).	 The	
selected	model	should	then	be	visually	compared	to	the	variogram	
to	ensure	that	the	model	 is	capturing	the	key	features	 in	the	data.	
Models	that	fail	to	converge,	or	that	do	not	provide	a	reasonable	fit	
to	the	data	are	another	indication	that	HR	analysis	may	be	inappro-
priate	(Calabrese	et	al.,	2016).

With	 a	 fitted,	 selected	 movement	 model	 in	 hand,	 AKDE	 HR	
estimates	can	then	be	calculated,	and	these	can	be	used	to	obtain	
BC	 estimates	 and	CIs.	 These	 overlap	 estimates	may	 either	 be	 the	
final	 product	 of	 the	 analysis	 or	 be	 used	 in	 subsequent	 analyses.	
Importantly,	the	confidence	intervals	attached	to	each	BC	estimate	
can	be	straightforwardly	propagated	into	derived	quantities,	such	as	
the	mean	overlap	within	a	group,	which	can	facilitate	testing	hypoth-
eses	 on	 similarity	 or	 differences	 among	 groups	 of	 interest.	While	
the	workflow	we	 describe	 involves	 several	 steps,	 the	ctmm	 pack-
age	and	graphical	user	interface	(Dong	et	al.,	2017)	streamline	this	
procedure.	A	full	example	of	the	workflow	is	shown	in	Supporting	
Information	Appendix	B.

2.4 | Simulation study

To	examine	the	statistical	properties	of	the	BC,	and	the	coverage	of	
our	CIs,	we	simulated	tracking	data	with	variable	sampling	durations	
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and	 frequencies.	 Data	were	 simulated	 based	 on	 pairs	 of	 both	 IID	
processes,	and	OUF	processes	(Fleming	et	al.,	2014b,c),	parameter-
ized	such	that	the	true	overlap	between	these	pairs	was	fixed	at	0.5.	
Simulating	from	an	OUF	process	generates	relocations	that	feature	
autocorrelated	 positions	 and	 velocities	 as	well	 as	 restricted	 space	
use	and	are	representative	of	modern	GPS	tracking	data	commonly	
used	in	HR	analyses	(Fleming	&	Calabrese,	2017).

Importantly,	the	timescale	over	which	autocorrelation	in	position	
decays,	τp	(also	termed	the	HR	crossing	time;	Calabrese	et	al.,	2016),	
is	 a	 key	 parameter	 for	 HR	 estimation	 (Noonan	 et	al.,	 in	 review).	
Formally,	τp	can	be	quantified	from	the	data	as	the	timescale	over	
which	an	individual's	positional	autocorrelation	decays	by	a	factor	of	
1

e
,	and	its	movement	process	reverts	to	the	mean	location	(Fleming	
&	Calabrese,	2017;	Fleming,	Fagan,	et	al.,	2015).	The	duration	of	the	
observation	period	(T),	in	relation	to	τp,	will	thus	dictate	the	effective	
sample	size	(ne)	of	a	dataset	via

which	 may	 be	 interpreted	 as	 the	 approximate	 number	 of	 range	
crossings	that	occurred	during	the	sampling	period.	We	tailored	our	
simulations	according	to	their	relative	effects	on	ne.	These	were:

(i)	 		Sampling duration.	 Observations	 were	 recorded	 eight	 times/
day,	 and	we	manipulated	 sampling	 duration	 (ranging	 from	1	 to	
4,096	days	 in	 a	 doubling	 series).	 For	 OUF	 simulations,	 the	 HR	
crossing	time	was	set	to	1	day,	and	the	velocity	autocorrelation	
timescale	to	1/5	of	a	day.	Notably,	this	parameterization	was	such	
that,	in	these	simulations,	the	sampling	duration	in	days	exhibited	
a	1:1	relationship	with	ne.

(ii)				Sampling frequency.	 Here,	 the	 sampling	 duration	was	 fixed	 at	
32	days,	 and	 we	 manipulated	 the	 sampling	 frequency	 (ranging	
from	1	to	1,024	fixes/day	in	a	doubling	series).	Again,	for	the	OUF	
process,	HR	crossing	time	was	set	to	1	day,	and	the	velocity	auto-
correlation	timescale	to	1/5	of	a	day.	The	fixed	sampling	duration	
in	these	simulations	resulted	in	ne	being	fixed	at	32,	irrespective	
of	variation	in	the	sampling	frequency.

We	 then	 compared	 the	 accuracy	 of	 the	 underlying	 HR	 es-
timates,	 the	 accuracy	of	 the	 estimated	overlap,	 and	 the	 realized	
coverage	of	the	confidence	intervals.	Results	were	averaged	over	
1,000	simulations	per	manipulation.	The	computations	were	con-
ducted	on	the	Smithsonian	 Institution	High	Performance	Cluster	
(SI/HPC).

2.5 | Empirical study

We	 demonstrate	 the	 functionality	 of	 this	 method	 using	 GPS	
data	 from	 Mongolian	 gazelles.	 Mongolian	 gazelles	 are	 medium-
sized	 herbivores	 that	 cross	 their	 ranges	 on	 seasonal	 timescales	
(Fleming	et	al.,	2014b,c).	Positional	data	for	36	Mongolian	gazelle	
were	 collected	 in	Mongolia's	 Eastern	Steppe	between	2007	and	
2011	 (Fleming	 et	al.,	 2014a).	 Both	 variogram	 analysis	 (Fleming	

et	al.,	 2014c)	 and	 model	 selection	 (Calabrese	 et	al.,	 2016)	 were	
used	 to	 confirm	 that	 there	 was	 evidence	 of	 range-residency	 in	
the	data.	From	these	diagnostic	checks,	13	individuals	showed	no	
signs	 of	 range-resident	 behaviour,	 and	 we	 restricted	 our	 analy-
ses	to	the	23	range-resident	individuals.	HR	estimation	was	then	
carried	 out	 using	 KDE	 and	 AKDE	 as	 described	 above.	We	 then	
computed	all	pairwise	BCs	±	95%	CIs	on	 the	KDE	and	AKDE	es-
timates.	Notably,	the	long	HR	crossing	timescales	(x̄ = 111.5	days;	
range	=	8.0–443.2),	 and	 comparatively	 short	 tracking	 durations	
(x̄ = 381.0	days;	range	=	67.2–755.0),	here	produced	a	mean	ne of 
6.1	(range	=	0.7–24.6).	This	is	a	regime	where	the	negative	bias	of	
conventional	 KDE	 is	 known	 to	 have	 serious	 implications	 for	HR	
estimates	on	autocorrelated	data	(Fleming	&	Calabrese,	2017).

2.5.1 | Downstream analyses

To	 further	 highlight	 the	 utility	 of	 these	 confidence	 intervals,	
we	 used	 the	 estimated	 overlap	 to	 quantify	 the	 edges	 of	 a	 spa-
tial	 interaction	 network	 (Wey	 et	al.,	 2008).	 As	 point	 estimates	
were	accompanied	by	CIs,	we	were	able	to	subset	edges	into	two	
categories:

(i)	 	Supported.	Well-supported	edges	were	identified	as	cases	where	
two	individuals	exhibited	overlapping	space	use,	with	a	minimum	
CI	that	was	greater	than	0.01—that	is,	there	was	a	95%	certainty	
that	the	overlap	was	≥0.01

(ii)			Unsupported.	 Unsupported	 edges	 were	 identified	 as	 cases	
where	the	point	estimate	suggested	overlapping	space	use,	but	
with	 a	minimum	CI	 that	was	 less	 than	 0.01—that	 is,	 there	was	
insufficient	evidence	to	be	certain	that	the	overlap	differed	sig-
nificantly	from	0.

We	then	quantified	a	number	of	commonly	used	diagnostics	(i.e.,	
network	 density,	 mean	 path	 length,	 and	 closeness	 centrality;	 Wey	
et	al.,	2008),	to	investigate	how	these	might	differ	when	the	network	
was	based	only	on	statistically	supported	edges	vs.	the	inclusion	of	un-
supported	edges.

All	 analyses	 were	 conducted	 in	 the	 R	 environment	 (R	 Core	
Team,	2016),	using	the	methods	implemented	in	the	package	ctmm 
(Calabrese	et	al.,	2016).

3  | RESULTS

3.1 | Simulation results

3.1.1 | Asymptotic properties of the BCss

Simulations	revealed	that	for	IID	data,	both	AKDE	and	KDE	HR	esti-
mates	provided	identical	results	and	were	relatively	unbiased	except	
at	very	small	sample	sizes	(Figure	1a).	The	resulting	overlap	was	also	
identical	 between	 estimators,	 and	 increasing	 the	 number	 of	 fixes,	
by	either	increasing	the	sampling	duration	(Figure	1b)	or	frequency	
(Figure	1e),	had	the	expected	effect	of	increasing	the	accuracy	of	the	

(23)ne≈
T

τp

,
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overlap	estimate	and	decreasing	the	uncertainty.	Notably,	the	CIs	on	
the	BC	offered	 reasonable	 coverage	of	 the	 true	overlap	across	 all	
sampling	regimes,	albeit	with	some	persistent	negative	bias	at	large	
sample	sizes	(Figure	1c,f).	This	was	the	result	of	bias	in	the	BC	decay-
ing	too	slowly	relative	to	the	variance	(see	Supporting	Information	
Appendix	A.3).

For	 autocorrelated	 data	 in	 contrast,	 AKDE	 95%	HR	 estimates	
were	 generally	 accurate	 across	 the	 range	 of	 sample	 durations	
(Figure	2a)	and	frequencies	(Figure	2d)	we	simulated,	whereas	KDE	
HR	estimates	were	severely	biased	for	all	but	the	largest	datasets.	
As	a	result,	while	the	estimated	overlap	between	AKDE	and	KDE	es-
timates	both	converged	to	the	truth	as	sampling	duration	increased	
(Figure	2b),	asymptotic	consistency	for	KDE	estimates	was	severely	
delayed.	Furthermore,	increasing	the	sampling	frequency	increased	
the	negative	bias	 in	overlap	estimates	derived	 from	KDE,	but,	 ap-
propriately,	 did	 not	 influence	 overlap	 estimates	 based	 on	 AKDE	
(Figure	2e).

The	 coverage	 of	 95%	 CIs	 for	 the	 KDE-derived	 overlap	 esti-
mates	was	 severely	 biased	 under	 all	 of	 the	 scenarios	we	 tested	
(Figure	2c,f).	 In	 contrast,	 the	 coverage	of	CIs	on	 the	AKDE	esti-
mates	consistently	provided	close	to	nominal	coverage	of	the	true	
overlap.

3.1.2 | Comparability of estimates

Our	baseline	simulation	study	controlled	the	effect	of	the	movement	
parameters	by	assuming	the	individuals	exhibited	identical	movement	
strategies	 and	were	 sampled	 at	 the	 exact	 same	 times.	Under	 these	
conditions,	the	improved	accuracy	of	AKDE	HRs	estimates	resulted	in	
more	accurate	overlap	estimates,	with	95%	CIs	that	provided	close	to	
nominal	coverage	(Figure	3a).	There	are	realistic	complications	to	our	
basic	simulation	strategy,	however,	including	cases	where	individuals	
are	subject	to	the	same	sampling	design,	but	exhibit	different	move-
ment	strategies,	and	cases	where	both	movement	strategies	and	sam-
pling	designs	differ.	Importantly,	we	found	that	AKDE-based	overlap	
still	provided	reasonable	coverage	for	both	of	these	cases	(Figure	3c,e).	
In	contrast,	because	of	the	differential	bias	in	KDE	HR	estimates,	the	
estimated	overlap	differed	substantially	between	each	of	 these	sce-
narios,	and	in	every	case	failed	to	provide	coverage	of	the	true	value	
(Figure	3b,d,f).

3.2 | Empirical case study

Consistent	with	our	simulated	findings	of	negative	bias	in	KDE	HR	
and	BC	estimates	at	mid	to	low	ne	on	autocorrelated	data,	empirical	

F I G U R E  1   	The	asymptotic	properties	of	KDE	and	AKDE	HR	estimators	(a	and	d)	and	the	BC	(b	and	e)	for	simulated,	IID	data,	as	well	as	
the	coverage	of	the	CIs	(panels	c	and	f),	as	a	function	of	sampling	duration	(top	row)	and	frequency	(bottom	row).	In	all	panels,	the	dashed	
horizontal	lines	depict	the	truth,	the	solid	line	the	mean	point	estimate,	and	the	shaded	regions	the	95%	CIs
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AKDE	HR	 estimates	 were	 larger	 than	 KDE	 estimates	 for	 all	 pairs	
(Figure	4a).	Median	pairwise	overlap	between	the	276	pairs	of	indi-
viduals	was	0.66	(95%	CI	0.58–0.76)	when	the	overlap	was	estimated	
from	AKDE	HR	estimates,	but	fivefold	lower	when	estimated	from	
KDE	estimates	(median	=	0.13;	95%	CI	0.06–0.22).

The	severe	negative	bias	of	KDE-derived	overlap	was	persistent	
across	all	 individuals.	This	can	be	 illustrated	 in	a	 specific	example,	
where	 the	KDE	HR	 estimates	 resulted	 in	 an	 estimated	 overlap	 of	
0.02	(95%	CI	0.01–0.03),	whereas	the	AKDE	HRs	resulted	in	an	over-
lap	of	0.80	(95%	CI	0.22–0.99).	Visual	inspection	of	the	range	esti-
mates	for	these	individuals	revealed	substantial	negative	bias	in	the	
KDE	HR,	whereas	the	AKDE	HR	was	larger,	with	appropriately	wide	
CIs	considering	the	small	ne of c.	4	for	each	HR	estimate	(Figure	4b,c).

3.2.1 | Downstream analyses

As	these	overlap	estimates	were	accompanied	by	confidence	inter-
vals,	 the	uncertainty	can	be	used	 to	 inform	downstream	analyses.	
For	 instance,	 a	 spatial	 network	 analysis	 based	 on	 the	 estimated	
overlap	revealed	461	edges	of	variable	strength	(Figure	5).	Of	these,	
275	were	well	 supported,	whereas	186	had	no	statistical	 support.	
We	 found	 that	 basing	 the	 network	 off	 of	 all	 possible	 edges,	 vs.	
only	those	edges	with	statistical	support,	 influenced	its	properties	

and	any	potential	biological	inferences	that	would	be	derived	from	
it.	 For	 instance,	 network	 density	 was	 reduced	 from	 0.86	 to	 0.63	
when	the	analysis	was	restricted	to	only	the	well-supported	edges.	
Furthermore,	 only	utilizing	 statistically	 supported	edges	 increased	
the	mean	path	 length	 from	1.13	 to	1.39.	 Interestingly,	despite	de-
creasing	density	and	increasing	the	mean	path	length,	constructing	
the	network	based	on	only	well-supported	edges	resulted	in	a	two-
fold	 increase	 in	 the	closeness	centrality	compared	 to	 the	network	
constructed	with	both	supported	and	unsupported	edges	(0.45	vs.	
0.23,	respectively).

4  | DISCUSSION

Despite	 the	 routine	 nature	 of	 estimating	 overlapping	 space	 use	
(e.g.,	 Berger	 &	 Gese,	 2007;	 Dougherty	 et	al.,	 2018;	 Frère	 et	al.,	
2010;	Sanchez	&	Hudgens,	2015),	there	exists	no	formal	inferential	
framework	for	this	analysis.	This	 is	 largely	due	to	the	 inherent	dif-
ficulties	associated	with	HR	estimation	(Fieberg	&	Börger,	2012)	and	
exacerbated	 by	 the	 historical	 lack	 of	 CIs	 on	 both	HR	 and	 overlap	
estimates.	As	a	solution,	we	have	demonstrated	how	AKDE	HR	esti-
mates	(Fleming	&	Calabrese,	2017;	Fleming,	Fagan,	et	al.,	2015)	can	
serve	as	a	reliable	foundation	on	which	to	base	statistical	inference.	

F I G U R E  2   	The	asymptotic	properties	of	KDE	and	AKDE	HR	estimators	(a	and	d)	and	the	BC	(b	and	e)	for	simulated,	autocorrelated	
tracking	data,	and	the	coverage	of	the	CIs	(c	and	f),	as	a	function	of	sampling	duration	(top	row),	and	frequency	(bottom	row).	In	all	
panels,	the	dashed	horizontal	lines	depict	the	truth,	the	solid	line	the	mean	point	estimate,	and	the	shaded	regions	the	95%	CIs.	Notably,	
convergence	to	the	truth	was	much	slower	for	KDE,	and	the	coverage	of	KDE's	CIs	was	far	from	appropriate	in	all	cases
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F I G U R E  3   	HR	and	overlap	estimates	
for	two	simulated	individuals	with	a	
true	overlap	of	0.50.	In	all	panels,	the	
dashed	circles	depict	the	true	95%	
areas,	the	solid	black	lines	the	estimated	
95%	areas,	and	the	grey	lines	the	95%	
CIs	on	the	area	estimates.	In	the	first	
row,	relocations	were	simulated	from	
OUF	models	with	identical	movement	
parameters	and	sampling	times.	In	the	
second	row,	sampling	was	held	consistent,	
but	the	individual	plotted	in	yellow	had	
a	HR	crossing	time	of	1	week	vs.	1	day	
for	the	individual	in	red.	In	the	third	
row,	movement	again	differed	between	
individuals,	but	here,	the	individual	in	
yellow	was	sampled	once	every	30	min	vs.	
once	every	3	hrs	for	the	individual	in	red.	
Note	how	in	all	cases	AKDE-based	overlap	
estimates	were	relatively	consistent	and	
provided	coverage	of	the	true	overlap,	
whereas	KDE-based	overlap	estimates	
varied	substantially	and	consistently	failed	
to	provide	coverage	of	the	truth
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F I G U R E  4   	(a)	The	relationship	between	pairwise	estimates	of	the	BC	for	Mongolian	gazelle,	computed	from	KDE	and	AKDE	HR	
estimates.	The	dashed	1:1	line	depicts	parity	between	these.	Note	how	all	cases	fall	above	this	line,	highlighting	how	AKDE-derived	BC	
suggests	more	overlap	than	KDE-derived	BC.	An	example	of	this	discrepancy	is	depicted	in	(b),	with	AKDE	BC	suggesting	extensive	overlap	
0.80	(0.22–0.99),	whereas	in	(c),	the	negative	bias	in	KDE	propagates	to	produce	a	biased	estimate	of	the	overlap	0.02	(0.01–0.03).	Crucially,	
with	effective	sample	sizes	of	c.	4	for	each	HR	estimate,	the	CIs	approximated	from	the	AKDE	estimates	were	appropriately	wide,	vs.	KDE's	
deceivingly	narrow	CIs
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In	addition,	we	have	 implemented	a	small-sample-size	bias	correc-
tion	for	the	BC	and	derived	well-behaved,	approximate	CIs	on	the	
point	 estimate.	Collectively,	 these	advances	permit	 researchers	 to	
accurately	quantify	HR	overlap,	even	when	sampling	strategies	and	
underlying	movement	parameters	differ	among	groups	being	com-
pared,	 and	 test	whether	 any	observed	differences	are	 statistically	
meaningful.

4.1 | Home range and overlap estimation: an 
intrinsic relationship

A	crucial	component	of	any	statistical	inference	is	having	compara-
ble	measures	on	which	to	base	analyses.	Overlap	is	typically	condi-
tional	on	HR	estimates	(Fieberg	&	Kochanny,	2005;	Millspaugh	et	al.,	
2004),	which	are	 themselves	estimated	 from	animal	 tracking	data.	
As	 overlap	 estimation	 relies	 on	 at	 least	 three	 separate	 estimates	
(two	HR	estimates,	and	their	overlap),	it	follows	that	this	analysis	is	
particularly	vulnerable	to	issues	of	estimator	bias.	Accurate	HR	esti-
mation	is	a	deceptively	challenging	problem,	however,	as	autocorre-
lation	(Fleming,	Fagan,	et	al.,	2015),	small-sample-size	bias	(Fleming	
&	Calabrese,	2017),	and	sampling	irregularities	(Fleming	et	al.,	2018;	
Frair	et	al.,	2010)	will	significantly	influence	any	statistical	analyses	
applied	to	animal	tracking	data.	More	subtly,	even	identical	sampling	
strategies	can	still	produce	differentially	biased	HR	estimates	if	the	
underlying	 parameters	 of	 movement	 differ	 markedly	 between	 in-
dividuals	 (Fleming	&	Calabrese,	2017:	Noonan	et	al.,	 in	review).	As	
these	are	nearly	ubiquitous	aspects	of	 animal	 tracking	data,	 accu-
rate	overlap	estimation	requires	statistical	methods	that	can	handle	
these	complications,	without	introducing	artifactual	differences	due	
purely	to	estimator	bias.

In	this	respect,	our	simulation	study	revealed	that,	for	autocor-
related	 data,	 KDE	 regularly	 underestimated	 HR	 sizes	 (Fleming	 &	

Calabrese,	2017;	Noonan	et	al.,	in	review),	and	this	negative	bias	was	
directly	propagated	 to	overlap	estimates.	For	KDE,	 the	amount	of	
data	required	to	achieve	an	accurate	measure	of	overlap	was	very	
large,	and	most	empirical	cases	are	likely	to	underestimate	the	true	
overlap	 (Fieberg	&	Kochanny,	2005).	 In	 contrast,	AKDE	HRs	were	
larger,	 but	 significantly	 more	 accurate,	 which	 translated	 to	 more	
accurate	overlap	estimates.	Crucially,	when	we	varied	the	sampling	
design	and	movement	strategies	between	the	 individuals	we	were	
comparing,	AKDE-based	estimates	provided	reliable	coverage	of	the	
true	overlap,	whereas	this	was	not	the	case	for	KDE.	Consistent	with	
the	 results	of	our	 simulation	 study,	 empirical	AKDE	HRs	 from	au-
tocorrelated	Mongolian	gazelle	GPS	data	were	ca.	twice	as	large	as	
KDE	estimates.	This	resulted	in	the	median	pairwise	overlap	being	
fivefold	larger	when	based	on	AKDE	vs.	KDE.	Had	an	analysis	been	
based	 on	 the	 biased	KDE	 estimates,	 one	would	 have	 erroneously	
concluded	that	there	was	little	spatial	overlap	in	this	system,	whereas	
the	results	based	on	AKDE's	more	rigorous	estimates	revealed	these	
individuals	actually	exhibited	extensive	overlap.	Although	these	em-
pirical	estimates	could	not	be	compared	to	a	truth,	as	per	our	simula-
tions,	this	finding	is	also	consistent	with	a	recent	analysis	by	Noonan	
et	al.	 (in	 review).	 In	a	 large-scale	 comparative	 study	encompassing	
369	 individuals	across	30	species,	 they	 found	 that	AKDE	95%	HR	
estimates	 consistently	 included	 c.	 95%	 of	 holdout	 observations,	
whereas	KDE	estimates	included	c.	92%	at	high	ne	(>256),	but	only	
c.	75%	at	low	ne.	This	means	AKDE's	larger	estimates	are	accurate,	
while	 those	 produced	by	 conventional	KDE	on	 the	 same	data	 are	
consistently,	and	often	grossly,	too	small.	The	net	result	is	that	AKDE	
provides	 a	 solid	 foundation	 for	 estimating	 overlap	 under	 realistic	
sampling	 regimes,	 resulting	 in	accurate	overlap	estimates	 that	 can	
validly	be	compared	across	studies.

As	described	above,	a	fundamental	component	of	estimating	HR	
overlap	is	having	comparable	measures	on	which	to	base	analyses.	

F I G U R E  5   	Figure	depicting	(a)	the	
GPS	locations	for	23	Mongolian	gazelle	
tracked	in	Mongolia's	Eastern	Steppe;	(b)	a	
network	diagram	with	edge	weights	based	
on	overlap	values;	and	(c)	an	example	
case	of	two	HR	estimates	where	the	
point	estimate	of	the	overlap	suggests	a	
connection,	but	the	CIs	on	the	estimates	
suggest	that	connection	might	not	be	
statistically	significant.	The	dashed	
lines	in	(b)	depict	pairs	where	the	point	
estimate	suggests	a	connection,	but	with	
CIs	that	include	0.01	and	thus	may	not	be	
statistically	significant.	The	transparency	
of	the	lines	is	proportional	to	the	point	
estimate	of	the	BC.	The	connection	
depicted	in	red	on	the	right-hand	side	of	
(b)	corresponds	to	the	pair	in	(c)
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Notably,	in	this	study,	we	consider	range	estimators	in	the	sense	of	
Burt	(1943),	which	estimate	a	long-run	space	use,	assuming	the	focal	
individual	does	not	change	 its	movement	process	 (Fleming,	Fagan,	
et	al.,	2015).	This	includes	KDEs,	minimum	convex	polygons	(MCP;	
Mohr,	1947),	and	time-naive	local	convex	hulls	(LoCoH)	(Getz	et	al.,	
2007).	Also	of	 interest	are	occurrence	distribution	estimators	 such	
as	 the	Brownian	bridge	 (Horne,	Garton,	Krone,	&	 Lewis,	 2007)	 or	
t-LoCoH	(Lyons,	Turner,	&	Getz,	2013)	which	quantify	uncertainty	in	
the	animal's	location	during	the	sampling	period,	including	times	not	
sampled.	Crucially,	this	uncertainty	vanishes	in	the	limit	where	both	
the	sampling	interval	and	telemetry	error	approach	zero.	Although	
these	two	mathematically	distinct	classes	of	distributions	have	been	
historically	 conflated	 under	 the	 umbrella	 term	 of	 “utilization	 dis-
tributions,”	 they	have	very	different	 interpretations	and	use	cases	
(Fleming,	Fagan,	et	al.,	2015).	Consequently,	overlap	based	on	occur-
rence	estimates	has	a	very	different	meaning	from	overlap	based	on	
range	estimates	and	is	beyond	the	scope	of	the	present	work.

We	also	note	that	extending	our	bias	correction	and	CIs	to	other	
HR	estimators,	 such	as	MCP,	LoCoH,	or	non-GRF	KDE	bandwidth	
optimizers,	is	not	a	tractable	problem.	First,	our	methods	are	explic-
itly	based	on	the	GRF	approximation,	so	they	are	not	consistent	with	
non-GRF	estimators.	Second,	the	GRF-based	methods	implemented	
in ctmm	are,	to	our	knowledge,	the	only	HR	estimators	that	quan-
tify	uncertainty.	As	an	uncertainty	estimate	is	a	prerequisite	for	our	
error	propagation	techniques,	it	would	not	currently	be	possible	to	
adapt	our	approach	to	other	estimators.	Finally,	the	target	distribu-
tions	and	expectation	values	of	geometric	methods	such	as	MCP	and	
LoCoH	are	usually	unknown,	which	makes	these	estimators	incom-
patible	with	the	methods	developed	here.

4.2 | Properties of the overlap estimator

In	addition	to	utilizing	reliable	HR	estimates,	the	overlap	estimator	
itself	should	have	desirable	properties	(Fieberg	&	Kochanny,	2005).	
While	several	valid	estimators	exist,	 the	BC	(Bhattacharyya,	1943)	
stands	out	because	of	its	statistical	validity,	geometric	interpretabil-
ity,	computational	efficiency,	and	asymptotic	consistency.	As	noted	
by	Fieberg	and	Kochanny	(2005),	however,	the	BC	is	prone	to	exhib-
iting	negative,	small-sample-size	bias	 (Djouadi	&	Snorrason,	1990).	
To	correct	for	this,	we	derived	a	small-sample-size	bias	correction,	
which	improved	the	accuracy	of	BC	estimates	(Djouadi	&	Snorrason,	
1990).

Furthermore,	 problematic	 is	 the	 historical	 lack	 of	CIs	 on	 over-
lap	estimates.	Overlap	is	an	estimate	derived	from	data	and	should	
be	accompanied	by	a	measure	of	 the	uncertainty	 (Pawitan,	2001).	
Without	this,	one	cannot	properly	 infer	 the	 importance	of	a	given	
estimate.	As	 a	 solution,	we	 have	 derived	CIs	 on	 the	BC	based	 on	
a	GRF	approximation.	Using	simulated	data,	we	demonstrated	how	
this	 implementation	 will	 provide	 reasonable	 coverage	 of	 the	 true	
overlap.	We	note,	however,	that,	while	generally	well	behaved,	there	
was	some	persistent	negative	bias	in	the	coverage	of	these	CIs.	The	
biased	coverage	 is	 likely	 the	 result	of	 the	bias	 in	 the	BC	point	es-
timate	decaying	too	slowly	relative	to	the	variance	as	ne	 increased	

(Figure	 A.2).	 With	 asymptotically	 efficient	 estimators,	 this	 ratio	
would	decay	at	a	rate	of	1∕

√

N	or	better,	whereas	here	it	increases	
at	a	 rate	of	c. 

√

N.	As	 such,	 their	 coverage	should	be	 treated	with	
caution,	particularly	at	 large	ne.	Furthermore,	because	we	approxi-
mate	the	HRs	as	Gaussian	when	estimating	uncertainty,	the	CIs	may	
exhibit	 unintended	 behaviour	 when	 the	 overlap	 is	 dependent	 on	
non-Gaussian	features.

Despite	 these	 limitations,	well-behaved	 CIs	 for	 HR	 overlap	 is	 a	
novel	 feature	 and	 permits	 true	 statistical	 inference	 on	 overlap	 esti-
mates.	For	instance,	these	CIs	can	be	applied	to	a	reference	value	of	in-
terest	(e.g.,	the	mean	overlap	between	individuals	of	the	same	species	
studied	elsewhere)	to	test	for	significant	differences	between	these,	
as	opposed	to	relying	on	ad hoc	comparisons.	Additionally,	if	overlap	is	
being	used	to	inform	subsequent	analyses,	CIs	can	be	used	to	improve	
these.	 For	 example,	we	 found	 that	 differentiating	 between	 the	275	
overlap	estimates	that	were	well	supported	by	the	data	and	the	186	
that	may	have	been	artifactual	significantly	influenced	the	properties	
of	 an	 interaction	network	of	Mongolian	 gazelle.	When	based	on	 all	
possible	edges,	the	network	suggested	a	larger	number	of	edges,	but	
with	a	low	closeness	centrality.	Conversely,	when	based	only	on	edges	
with	statistical	support,	the	network	density	decreased	but	closeness	
increased.	The	supported	and	unsupported	networks	would	each	lead	
to	a	unique	set	of	biological	interpretations,	with	only	the	former	being	
supported	by	the	data.

5  | CONCLUSION

In	 conclusion,	 we	 have	 developed	 the	 first	 inferential	 framework	
for	HR	overlap	 tailored	 for	 the	specific	needs	of	ecologists	 that	 is	
both	 statistically	 valid	 and	 computationally	 efficient.	 Collectively,	
the	more	accurate	and	comparable	HR	estimates	provided	by	AKDE	
(Fleming	&	 Calabrese,	 2017;	 Fleming,	 Fagan,	 et	al.,	 2015;	Noonan	
et	al.,	 in	 review)	 and	 our	 novel	 bias	 correction	 and	CIs	 on	 the	BC	
permit	 rigorous	 overlap	 estimation.	 This	 method	 is	 now	 available	
via	 command	 line	 interface	 through	 the	ctmm	 package	 (Calabrese	
et	al.,	 2016)	 or	 through	 the	web-based	 graphical	 user	 interface	 at	 
ctmm.shinyapps.io/ctmmweb/	(Dong	et	al.,	2017).
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