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Abstract
We consider the problem of inference in a prob-
abilistic model for transient populations where
we wish to learn about arrivals, departures, and
population size over all time, but the only avail-
able data are periodic counts of the population
size at specific observation times. The under-
lying model arises in queueing theory (as an
Mt/G/1 queue) and also in ecological mod-
els for short-lived animals such as insects. Our
work applies to both systems. Previous work
in the ecology literature focused on maximum
likelihood estimation and made a simplifying in-
dependence assumption that prevents inference
over unobserved random variables such as ar-
rivals and departures. The contribution of this
paper is to formulate a latent variable model and
develop a novel Gibbs sampler based on Markov
bases to perform inference using the correct, but
intractable, likelihood function. We empirically
validate the convergence behavior of our sampler
and demonstrate the ability of our model to make
much finer-grained inferences than the previous
approach.

1. Introduction
We consider the problem of inference in a probabilistic
model for transient populations where we wish to learn as
much as possible about the complete state of the popula-
tion over time, including arrivals, departures, and popula-
tion size, but the only available data are periodic counts of
the population size at specific observation times.

Our work applies to a simple probabilistic model that arises
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in two distinct places. It is most precisely described in
queuing theory, where it is known as the Mt/G/1 queue
(Eick et al., 1993) and describes a situation where: (1) cus-
tomers arrive at a queue over time according to a Poisson
process with arbitrary intensity function, (2) they are as-
signed to a server immediately upon arriving at the queue,
and (3) their service time is drawn independently from an
arbitrary, shared, service-time distribution. In this termi-
nology, our paper addresses the problem of making infer-
ences about arrivals and departures from the queue when
only the total number of customers in service is observable
and only at discrete observation times.

We are primarily motivated by a specific application in
ecology. Zonneveld (1991) proposed what is in essence
an Mt/G/1 queue for analyzing transient or short-lived
animal populations, specifically, insects. Adults enter the
population (arrive at the queue) either by advancing from
a previous life stage or immigrating from outside the sur-
vey area and then remain in the survey area for a specified
amount of time (service time) before dying or leaving the
area (departing the queue). Counts of abundance (number
of customers in service) are made over time at the survey
location. From this information, ecologists would like to
make inferences about life history events such as migration,
birth, and death that correspond to arrivals and departures
from the queue.

Information about arrivals and departures in insect popula-
tions is important for several reasons. First, the timing of
arrivals (e.g., the emergence of adult butterflies from co-
coons) is linked to climate. Shifts in timing are important
to detect because they may result from climate change and
have the potential to disrupt the synchrony of ecosystems.
Second, understanding lifespans (departure rates) is key to
monitoring population size and trends over time, because
lifespans are confounded with abundance when interpret-
ing survey counts. For example, it can be hard to distin-
guish between a population where many individuals arrive
but die quickly from one where few arrive but individuals
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are long-lived.

The main contributions of this work are the formulation of
a latent variable model for this problem and the develop-
ment of a novel Gibbs sampler for the challenging problem
of inference in the model. Our work improves upon the sta-
tistical treatment in the ecology literature. Zonneveld and
almost all subsequent authors have made a simplification
to the likelihood that (wrongly) assumes independence be-
tween observations at different times. While this is conve-
nient for estimating parameters, it relies on a false assump-
tion, and, more importantly, because the relevant random
variables are replaced by their expected values, it impover-
ishes the model in a way that prevents inference over hid-
den aspects of the process.

Our model works by dividing time into intervals based on
the observation times and then binning all individuals ac-
cording to their birth and death intervals. The number of
individuals in each bin is unknown and treated as a latent
variable. We then seek to infer the values of the latent vari-
ables from (potentially noisy) observations of abundance.
The problem is particularly challenging when the observa-
tions are exact, because this imposes hard constraints on the
latent variables. For the task of inference over the hidden
variables, we contribute a novel Gibbs sampler that uses
a set of update “moves” to resample the latent variables.
We prove that these moves form a Markov basis—i.e., they
lead to an ergodic sampler—even in the presence of hard
constraints. We also prove that the univariate distributions
encountered by our sampler are log-concave, which allows
for highly efficient sampling even in large populations.

We empirically validate our theoretical result to show that,
when there are hard constraints, our novel moves are re-
quired for ergdocity, and that they accelerate convergence
even when there are no hard constraints. We also demon-
strate the scalability benefits of log-concavity and present
a case study to demonstrate the value of our latent variable
model for making inferences about the hidden aspects of
partially observed transient populations.

2. Related Work
We briefly mention some related work. Eick et al. (1993)
give a detailed mathematical analysis of the Mt/G/1
queue. Their reasoning about the covariance of queue size
at two different times (Theorem 2) uses a scheme similar
to our latent variable model to partition individuals by their
birth and death intervals. Several queueing papers touch on
the idea of parameter estimation from partial observations.
Ross et al. (2007) estimate the parameters of an M/M/c
queue from length data. That model differs from ours in
that it has a finite number of servers, and arrival and depar-
ture rates are constant over time so there are only two pa-

rameters to estimate. Blanghaps et al. (2013) estimate the
service-time (lifespan) distribution of an M/G/1 model
from partial data about arrivals and departures. This differs
from our work because arrival rates are assumed constant,
and the data and inferential goals are different.

In the ecology literature, Gross et al. (2007) share our moti-
vation of addressing the simplifying assumptions made by
Zonneveld (1991). Their emphasis is parameter estimation,
but to better estimate confidence intervals, they develop an
MCMC method to sample from the correct probabilistic
model. Their approach differs from ours in several ways.
First, they do not fully represent the latent process: in par-
ticular, they aggregate all individuals alive on a day regard-
less of when they entered the population. This is valid only
for exponential lifespan distributions (constant death rates),
while our method applies more generally. By aggregat-
ing, their model also loses the ability to answer inference
queries about lifespans. Second, they do not consider the
problem of perfect observations and the hard constraints
they impose on the sampler. Finally, their sampler operates
in discretized time and moves individual emergence times
by one unit at a time, which scales poorly with population
size. We work in continuous time and exploit log-concavity
to scale to very large populations efficiently.

Our sampling approach draws on the concept of Markov
bases and is closely related to samplers for contingency ta-
bles (Diaconis & Sturmfels, 1998). Our idea to exploit log-
concavity for efficient sampling in very large populations is
based on ideas from sampling in collective graphical mod-
els (Sheldon & Dietterich, 2011).

3. Generative Model
In this section, we first introduce the underlying probabilis-
tic model for lifespans of individuals in a transient popu-
lation and describe the model of repeated observations of
populations size. Then, we describe how to formulate the
entire process as a generative model with discrete latent
variables over which we will perform inference.

The model assumes that N individuals will be born or en-
ter the study area during a fixed time interval (e.g., for in-
sects, N is the total number from a single generatation) and
that individuals are independent and identically distributed.
The ith individual is born at time Si and has lifespan Zi.
Birth times are drawn independently from a distribution
with density fS(s) and lifespans are drawn independently
from a distribution with density fZ(z). In our experiments,
we use the normal density for fS and exponential density
for fZ to mimic Zonneveld’s setup, though the method can
work with arbitrary distributions. This model differs very
slightly from the Mt/G/1 queue because it assumes a
fixed number of individuals. However, it becomes iden-
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tical if we assume that N ⇠ Poisson(�), in which case the
birth times follow a Poisson process with intensity function
�fS(s). Our methods apply to that case with very minor
modifications, which we describe in Section 4.5.

Our observation model assumes we cannot directly observe
the births or lifespans. Instead, we make T measurements
of abundance (population size) at times {t1, t2, . . . , tT }.
Let nk be the actual abundance at time tk. We assume
that each individual in the population is observed indepen-
dently with probability ↵ to yield the noisy count yk ⇠
Binomial(nk,↵) for some 0  ↵  1.

To formulate the latent variable model, it is useful to notice
that the observation times partition the real line into inter-
vals {I0, I1, . . . , IT } (e.g., see Figure 1) and we can use
these intervals to aggregate lifespan events. The joint prob-
ability of an individual being born at some point in interval
Ii and leaving the population at some point in interval Ij is

p(i, j) :=

Z ti+1

ti

fS(s)

Z tj+1�s

tj�s
fZ(z) dz ds.

Similarly, let q(i, j) be a random variable denoting the to-
tal number of individuals who are born during interval Ii
and die during Ij , and let p and q be the vector concate-
nation of the p(i, j) and q(i, j) values, respectively. (Later,
we will view p and q as matrices when it is convenient
to do so.) Since individuals are i.i.d. and each is counted
in exactly one cell of q, the marginal distribution of q is
Multinomial(N,p).

The count variables q suffice as latent variables to deter-
mine the abundance at sampling times. In particular, the
abundance nk at observation time tk is:

nk =

X

i<k

X

j�k

q(i, j). (1)

This is the number of individuals that were born in an in-
terval prior to tk and die in an interval after tk. Note that
individuals that are born and die in the same interval, i.e.
they are counted in a diagonal entry q(i, i), are not included
in any nk because they were never alive during an observa-
tion time. Alternatively, we can write Eq. (1) as nk = aTk q,
where ak is the vector with entries

ak,(ij) =

(
1 i < k  j

0 otherwise
.

Then we can stack the vectors aTk into the rows of the ma-
trix A to write the abundance values compactly as n = Aq.

This provides enough information to succinctly write the

full generative model:

q ⇠ Multinomial(N,p),

n = Aq,

yk ⇠ Binomial(nk,↵).

The full joint probability of latent variables q and noisy
observations y is then the product of the multinomial prior
and the binomal likelihood:

p(q,y) = N !
Q

i,j
p(i,j)q(i,j)

q(i,j)!

Q
k

nk!
yk!(nk�yk)!

↵yk (1� ↵)nk�yk

In this equation, it is understood that nk is a deterministic
function of q. Direct computation of the marginal proba-
bility p(y) is intractable because it requires summing over
all possible values of q.

In contrast to this model, Zonneveld used the following
tractable approximation:1

⇢ = Ap

yk ⇠ Binomial(N,↵⇢k)

This model makes two major simplifications. First, the la-
tent random varables q are replaced by the deterministic
quantities ⇢, where ⇢k is the probability an individual is
alive at time tk. This model is therefore incapable of per-
forming inference over the latent process. Second, because
the observation yk now only depends on the deterministic
quantity ⇢k, the observations at different times become mu-
tually independent. In the true model, observations are cor-
related due to the lifespans of individuals that span multiple
observation times. The primary motivation of our work is
to develop an inference procedure for the more difficult, but
correct, model in which q is preserved as a latent variable.

4. Inference
In this section our goal will be to draw samples from
the conditional distribution of q given observations y and
known density functions fS and fZ (and hence known
cell probabilities p). Exact calculation of the likelihood
is intractable because it involves summing over all possible
configurations of q, but sampling is a tractable alternative.

4.1. Hard Constraints

Our method is based on Markov Chain Monte Carlo
(MCMC) sampling, but a key difficulty arises as ↵ ! 1

due to the presence of hard constraints in the probability
distribution. To see this, note that a typical approach for

1Zonneveld wrote this using a Poisson likelihood yk ⇠
Poisson(↵N⇢k), but we write it as Binomial to make a more di-
rect comparison. This is appropriate when individuals are counted
only once during a single survey.
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I0 I1 I2 I3

+!
-!

+! 0 -!Change in n:

Pair move

q(1,3)

q(0,2)

Figure 1. Illustration of a pair move on timeline. Observation
times (vertical lines) divide time into intervals I0, I1, I2, I3. This
particular move subtracts � individuals from q(1, 3) and adds
them to q(0, 2). Note that this move does not preserve the abun-
dances at observation times t1 and t3.

MCMC in a multinomial would be to simultaneously re-
sample the counts in two cells of q, with the effect that
one increases by � and the other decreases by �. Figure 1
shows an example where q(0, 2) increases by � and q(1, 3)
decreases by �. It is easy to see in this example that n1 and
n3 also change from their original values (by +� and ��
respectively) so this modification is not possible under the
constraint on abundance at observation times.

Overall, there are four constraints we must consider when
proposing a new value for q. The first two come from
the multinomial distribution: q must always remain non-
negative and q must sum to N , which we write compactly
as q � 0 and 1Tq = N . The third constraint comes from
the binomial likelihood: for all k, the observed value yk
may not exceed the true queue length at time tk, which we
write as Aq � y. Finally, when ↵ = 1, the observations
specify the exact abundance values, so the previous con-
straint becomes an equality constraint: Aq = y.

Our approach will then be based on “moves” that carefully
modify more than two entries of q so the constraints are
always preserved. A move is a vector z of the same size as
q, with entries in the set {�1, 0,+1}. A new configuration
q0

= q + �z is obtained by first selecting a move z, and
then choosing an integer move amount �.

We describe below how the moves are designed to always
preserve the equality constraints. The inequality contraints
place bounds on the possible value of �. First, to ensure
that all entries of q0 remain non-negative, � must be at least
L1 = �min{q(i, j) : z(i, j) = +1} and at most U1 =

min{q(i, j) : z(i, j) = �1}. Second, to ensure that Aq0 �
y, we require �Az � y �Aq, which provides:

� � L2 := max{(y �Aq)k/(Az)k : (Az)k > 0},
�  U2 := min{(y �Aq)k/(Az)k : (Az)k < 0}.

The overall constraints are � � L := max{L1, L2} and
�  U := min{U1, U2}.

The value of � is chosen by sampling from the induced uni-

variate distribution:

p(�) / p(q+ �z | y), � 2 {L, . . . , U}. (2)

The values of p(�) are proportional to the joint probability
p(q+ �z,y), which can be computed efficiently.

Designing moves in this way leads to a form of Gibbs sam-
pler (Geman & Geman, 1984): the proposed configuration
q0 is drawn from the restricted set {q + �z : L  �  U}
with probability proportional to p(q0

). Just as in standard
Gibbs sampling, the ratio of the proposal density to the true
density is equal to one and the move is always accepted.

4.2. Markov Basis

A challenge is to design a set of moves such that the sam-
pler is ergodic. Let Q be the set of configurations that sat-
isfy all hard constraints. We require that, for any two con-
figurations q1,q2 2 Q, there is a valid sequence of moves
that leads from q1 to q2. A move set M that satisfies this
property is called a Markov basis with respect to Q (Di-
aconis & Sturmfels, 1998). We next describe several pat-
terns of moves that we will use to construct Markov bases.
When selecting a move z, we first select one of these pat-
terns uniformly at random, then select the indices for the
move uniformly at random.

A pair move z 2 Mpair is of the form illustrated in Figure
1. It is specified by four indices i  j, k  ` such that
(i, j) 6= (k, `). It has one positive entry z(i, j) = +1 and
one negative entry z(k, `) = �1, with the effect of moving
one individual from cell (k, `) to cell (i, j). Pair moves do
not in general preserve the abundance values n = Aq.

A shuffle move is the special case of pair moves that occurs
when i = j and k = `, so only unobserved individuals are
“shuffled”. Such a move does preserve abundance values
n = Aq at observation times. We denote the set of all
shuffle moves by Mshuffle.

A cycle move z 2 Mcycle (Figure 2, top) is specified by
four indices i  i0  j  j0. It has four non-zero entries
z(i, j) = z(i0, j0) = +1 and z(i, j0) = z(i0, j) = �1 with
the effect of taking two overlapping lifetimes and swap-
ping their end intervals, e.g.: (i, j), (i0, j0) $ (i, j0), (i0, j).
It is straightforward to see that a cycle move preserves
the abundance values n = Aq at observation times.

j j0

i + �
i0 � +

Cycle moves are well-known from the
contingency table literature (Diaconis &
Sturmfels, 1998). When viewed as a ma-
trix, a cycle move modifies a pair of rows
and columns of q in the pattern illustrated
at the right. From this it is clear that, in addition to pre-
serving the abundance values n = Aq, a cycle move also
preserves the row and column sums of q, i.e., the numbers
of individuals that are born and die in each interval.
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I0 I1 I2 I3

+!
+!

0 0 0Change in n:
-!

-!

Cycle move

I0 I1 I2 I3

+! +!

0 0 0Change in n:

-!-!

Merge/split move

Figure 2. Moves that preserve the constraint Aq = y. Top: cycle.
Bottom: merge/split.

A merge/split move (Figure 2, bottom) is the special case
of cycle moves when i0 = j. It has the effect of either
merging two short lifetimes into a longer one and adding an
unobserved individual or splitting one longer lifetime into
two shorter ones and eliminating an unobserved individual.

Our main result is that the moves above can be combined to
form a Markov basis for both the cases ↵ < 1 and ↵ = 1.
Theorem 1. When ↵ < 1, the feasible set (i.e, the support
of the distribution p(q | y)) is Q = {q : q � 0,1Tq =

N,Aq � y}. The set of all pair moves is a Markov basis
with respect to Q. When ↵ = 1, the feasible set is Qy =

{q : q � 0,1Tq = N, Aq = y}. The set of all cycle and
shuffle moves is a Markov basis with respect to Qy.

Although Theorem 1 implies that cycle moves are only
strictly required when ↵ = 1, we will show empirically
that they can subtantially improve mixing time even when
↵ < 1. Before proving Theorem 1, we first state several
useful lemmas.
Lemma 1. Any configuration q such that Aq = y satisfiesP

k>j q(j, k)�
P

i<j q(i, j) = yj+1 � yj for all j.

Proof. This simply states that the change in abundance
yj+1 � yj between the start and end of the jth interval
is equal to the number of new individuals

P
k>j q(j, k)

(those that are born during interval j and make it until the
end of the interval) minus the number of lost individualsP

i<j q(i, j) (those that were alive at the start of the inter-
val but died during interval j).

Lemma 2. Suppose Aq = y. The following conditions are
equivalent:

(i) No merge moves can be performed on q,

(ii) For all j, either
P

i<j q(i, j) = 0 or
P

k>j q(j, k) =
0,

(iii) For all j, we have
P

i<j q(i, j) = max{0, yj�yj+1}
and

P
k>j q(j, k) = max{0, yj+1 � yj}.

Proof. It is easy to see that if (ii) is not satisifed then some
merge move can be performed, so (i) implies (ii). If (ii)
is satisfied, then each interval has either births or deaths,
but not both. Thus, the total numbers of births and deaths
are determined by Lemma 1 and the sign of yj+1 � yj :
the number of deaths is equal to max{0, yj � yj+1} and
the number of births is equal to max{0, yj+1 � yj}. This
shows that condition (ii) implies (iii). Finally, if (iii) is true,
then it is clear that no merge moves can be performed, so
(iii) implies (i).

Lemma 3. Let q and q0 be any two configurations such
that Aq = Aq0

= y, the diagonal entries of q and q0

are the same, and no merge moves can be performed in
either configuration. Then q and q0 have the same row and
column sums.

Proof. The ith row sum of q is q(i, i) +
P

j<i q(i, j). We
have assumed that q(i, i) = q0(i, i). By Lemma 2 and the
assumption that no merge moves are possible in either con-
figuration, we have

P
j>i q(i, j) =

P
j>i q

0
(i, j), since

both of these are deterministic functions of y (condition
(iii) of the Lemma). Therefore the row sums of q and q0

are the same. The case of column sums is similar.

Proof of Theorem 1. Let q M��! q0 indicate that there is a
valid sequence of moves from q to q0 in M. This means
there are moves z1, . . . , zM 2 M such that q0

= q+ z1 +
. . .+ zM and q+ z1 + . . .+ zm 2 Q for all 0  m  M .
It suffices to consider moves with � = 1 for the purposes of
this proof. We wish to show that q M��! q0 for all q,q0 2 Q.

The case ↵ < 1 is easy. Starting from q, execute pair
moves to move all individuals to cell (0, T ), which guar-
antees that all individuals are present at each observation
and hence Aq � y remains satisfied. Then, for each other
cell (i, j) we execute pair moves to move q0(i, j) individu-
als from cell (0, T ) to cell (i, j).

For ↵ = 1, it is straightforward to verify that each cycle and
shuffle move does not change the abundance at observation
times or the total number of individuals, so the equality
constraints Aq = y and 1Tq = N always remain satisfied.
We need to demonstrate that the moves can be constructed
to also preserve the non-negativity constraints.

We will proceed by first transforming q and q0 into con-
figurations r and r0 that have the same number of births
and deaths in each interval, and then transforming r into
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r0 through another sequence of moves. Put together, this
will show that q M��! r, r M��! r0, and q0 M��! r0. Because
moves are reversible (M is closed under negation), we can
also conclude that r0 M��! q0 and hence q

M��! q0.

To transform q into r, first apply merge moves until no
more are possible, and then perform shuffle moves to move
all unobserved individuals to cell (0, 0). Do the same to
transform q0 into r0. Now, the conditions of Lemma 3 ap-
ply, and we can conclude that r and r0 have the same row
and column sums.

We will now show that there is a sequence of cycle moves
leading from r to r0. The reasoning is very similar to the
argument that cycle moves form a Markov basis for contin-
gency tables with fixed row and column sums (Diaconis &
Sturmfels, 1998)—however, we have the additional restric-
tion that q is upper triangular, so our result does not follow
directly from that result.

Let � = r0 � r. We wish to create a sequence of moves
that add up to �. It is enough to find one cycle move z
such that k� � zk1 < k�k1, which means that applying
the move z to r moves us strictly closer to r0. We can then
apply an inductive argument.

Since r and r0 have the same row and column sums, we
know that � has row and column sums that are identically
zero. Identify a cycle move using � as follows: first, let
�(i1, j1) be a negative entry of �, which must exist as
long as r 6= r0. Since the j1 column-sum of � is zero,
there must also be a positive entry �(i2, j1) in the same
column. Now, since the i2 row sum is zero, there must be
negative entry �(i2, j2) in the same row. Construct a cycle
move using these four indices. This gives the following:

�(i1, j1) < 0, z(i1, j1) = �1

�(i1, j2) > 0, z(i1, j2) = +1

�(i2, j2) < 0, z(i1, j2) = �1

�(i2, j1) = ?, z(i2, j1) = +1

Since � is integer-valued, it is clear that subtracting z from
� reduces the sum of absolute values of � by three for the
first three cells, and increases by at most one for the last
cell. We conclude that k�� zk1 < k�k1, as desired.

The final thing to check is that the non-negativity constraint
r+z � 0 remains satisfied. For the (i1, j1) cell, we observe
that r(i1, j1) > r0(i1, j1) � 0, so decreasing r(i1, j1) by
one cannot violate the constraint. The (i2, j2) entry is sim-
ilar. The (i2, j1) and (i1, j2) entries both increase, which
cannot violate non-negativity.

4.3. Log-Concavity and Efficient Sampling

As discussed in Section 4, the probability p(�) for a specific
move can be calculated efficiently (Eq. (2)). However, af-

ter fixing a move z, the number of possible values for � can
grow very large as the population size N increases. Thus,
the running time of a naive sampling method that computes
p(�) for all possible values and then samples from this dis-
crete distribution scales poorly with N . To alleviate this is-
sue, we prove that p(�) is log-concave, which allows us to
apply the discrete adaptive random sampling (ARS) algo-
rithm (Gilks & Wild, 1992; Sheldon, 2013) to sample from
p(�) in time that depends only very mildly on the number
of possible values, which nearly eliminates the dependence
of running time on population size and allows us to scale to
very large populations.
Theorem 2. The distribution p(�) is log-concave, i.e.,
p(�)2 � p(� � 1)p(� + 1) for all � 2 Z.

A proof is provided in the supplementary material.

4.4. Initialization with Canonical Form

Before running our sampler, we must initialize the latent
variables q in a way that satisfies all of the constraints.
We initialize q to a canonical form that always satisfies the
equality constraint Aq = y (and thus the inequality con-
straint Aq � y) by using the reasoning of Lemma 2. In
particular, we iterate over over observation times tk while
maintaining a “supply” of individuals that have lived from
previous intervals; in each interval, we either decrement the
supply (by ending the lifetime of some individuals) or in-
crease it (by spawning new individuals) to explain the dif-
ference between yk and yk�1. At the end of the process,
any remaining individuals are created to be “unobserved”
and distributed uniformly along the diagonal of q.

4.5. Modifications for Poisson Model

We briefly return to the discussion of the Mt/G/1 queue,
which is obtained from our model when N ⇠ Poisson(�)
instead of being a fixed constant. Minor technical differ-
ences arise in this case. First, in the generative model,
the distribution of q is no longer multinomial; instead, by
standard Poisson thinning arguments, it now has entries
that are independent Poisson random variables: q(i, j) ⇠
Poisson(�p(i, j)). In the sampler, the hard constraint
1Tq = N that arises from the multinomial distribution be-
comes unnecessary and invalid. As a result, pair moves
are no longer necessary, and are replaced in the sampler by
moves that change only a single entry of q. All other con-
straints remain valid, and cycle moves, which are designed
to preserve the hard constraints Aq = y when ↵ = 1, re-
main valid and necessary.

5. Experiments
We now report several experiments to evaluate the per-
formance of our sampler and demonstrate the advantages
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Figure 3. Effect of move types on convergence for two values of the observability probability: (a) ↵ = 1, (b) ↵ = 0.5. Plots show
cumulative mean negative log-likelihood of MCMC iterates vs. number of seconds.

of having a latent variable model. Our first two experi-
ments empirically confirm the ergodicity result of Theo-
rem 1 and demonstrate the improvement in mixing time
resulting from adding supplemental moves to the sampler.
Our third experiment demonstrates the running-time advan-
tages gained by exploiting the log-concavity of the likeli-
hood function within the sampler. We also provide a case
study that compares the inference capabilities of our la-
tent variable method compared to the previous approach
of (Zonneveld, 1991).

Effect of move types on convergence when ↵ = 1. To
evaluate the convergence of our Gibbs sampler under the
hard constraints imposed when ↵ = 1, we generated data
for a population of size N = 100 from a model with
emergence density fS(s) ⇠ Normal(µ = 8,� = 4) and
lifespan density is fZ(z) ⇠ Exp(⌧ = 3) (parameter-
ized by the mean ⌧ ) and computed observations at times
t = {1, 2, 3, . . . , 20}. We then performed MCMC from the
intial configuration described in Section 4 using different
subsets of the full move pool.

Figure 3(a) shows the convergence of the cumulative mean
negative log likelihood (NLL) of the first 1500 MCMC iter-
ates. When ↵ = 1, the sampler with only pair moves con-
verges to a mean NLL that is much higher than the other
samplers: this is evidence that pair moves are insufficient
for the sampler to reach higher probability configurations.
Similarly, the sampler with only cycle moves cannot ex-
plore the whole space because it cannot adjust the lifespans
of unobserved individuals (diagonal entries of q). In con-
trast, the samplers that use both pair and cycle moves are
able to explore the complete space, and converge to a much
lower mean NLL. Note that “pair, mergesplit” converges to
the same mean NLL as “pair, cycle”. It is possible to show
that merge/split moves can be used to simluate any cycle
move, so “pair, mergesplit” is also an ergodic sampler.
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Figure 4. Running time of 1000 MCMC iterations vs. population
size for sampler with and without ARS.

Effect of move types on convergence when ↵ < 1. Fig-
ure 3(b) shows results of the same experiment for ↵ = 0.5.
In this case, pair moves alone are sufficient for conver-
gence, so all samplers that include pair moves converge to
the same mean NLL. In contrast, cycles moves are not suf-
ficient for convergence, because they preserve the initial
value of Aq (abundance at sampling times), which is not a
valid constraint when ↵ < 1. Adding cycle moves alone to
the pair moves does not improve the speed of convergence.
However, adding merge/split moves, which are a subset
of cycle moves, does improve convergence speed. This
demonstrates the fact that our more sophisticated moves are
valuable even when hard constraints are not present.

Impact of Log-Concavity on Efficiency of Sampler. To
evaluate the running-time improvements of ARS over the
naive sampling method for p(�) we recorded the running
time of 1000 MCMC iterations using the entire pool of
moves with and without ARS. For this experiment, we fixed
the parameters µ = 8.0, � = 4.0, ⌧ = 3.0, ↵ = 0.5,
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Figure 5. Plots of abundance over time as samples from the posterior on q. In both cases, fS(s) ⇠ Normal(µ = 10.5,�2 = 7.84) and
fZ(z) ⇠ Exponential(⌧ = 7) with N = 100 and t = {0, 5, 10, . . . , 50}.

t 2 {1, 2, . . . , 20}, and varied the population size N to
study the scalability of the sampler with respect to pop-
ulation size. Figure 4 shows the results, averaged over 10
trials for each value of N . The naive method scales approx-
imately linearly (note that both axes are log-scale) with N ,
as expected, while the running time of the ARS-based algo-
rithm grows very slowly with population size. As a result,
it can scale to very large populations and outperforms the
naive method by orders of magnitude as N increases.

Benefits of Latent Variable Model. Our method provides
a number of unique advantages over Zonneveld’s approxi-
mation to the likelihood. In particular, by retaining the la-
tent variables, we can query the posterior distribution of life
history events given observations. Figure 5(a) illustrates
this comparison. Given a set of observed counts, Zonn-
eveld’s likelihood approximation can be used to estimate
model parameters; this then provides a mean abundance
curve under those parameters (red line).

Our method allows much finer-grained inference. For ex-
ample, the blue line shows a sample from the joint poste-
rior over abundance over the entire interval given the ob-
servations. This is an integer-valued curve that increases or
decreases by one at arbitrary points in time when a new in-
dividual is born or an existing individual dies. In this case,
↵ = 1 so the curve must exactly match the observations.

To generate this sample, we first use our MCMC sampler
to generate q from the posterior distribution given obser-
vations y. This specifies how many individuals are born
in Ii and die in Ij for all i, j. We then generate lifespans
for each individual as follows. For each (i, j), we generate
q(i, j) lifespans from the conditional distribution of S and
Z given S 2 Ii and S + Z 2 Ij . This is done by a simple
rejection sampler.

Figure 5(b) illustrates the entire posterior distribution by
showing 200 semi-transparent samples from the posterior
as in Figure 5(a). The samples in Figure 5(b) were ob-
tained by running or MCMC sampler over q until conver-
gence, and then thinning to obtain approximately indepen-
dent samples. Notice that each of the sampled abundance
curves converges to each of the observations, since ↵ = 1.
The increased spread of the samples between observation
times gives a sense of the increased variability in the model
as it interpolates between points.

This case study illustrates the advantages of having a true
latent variable model together with an efficient method to
draw samples from the posterior distribution.

6. Conclusion
This paper introduces a novel latent variable model for
inference in transient populations when only periodic ob-
servations of population size are available. The popula-
tion model arises both in queueing theory as an Mt/G/1
queue and in ecological models for insect populations. Pre-
vious approaches in the ecology literature have made a
simplifying assumption to make the likelihood tractable.
Instead, we present a Gibbs sampler for the correct,
but intractable, likelihood. The Gibbs sampler employs
specially-designed moves to preserve the hard constraints
present in this problem, and we prove that these lead to
an ergodic sampler. We empirically validate the ergodic-
ity result and show that special moves lead to faster mix-
ing even when hard constraints are not present. Finally, we
demonsrate the utility of this model over existing work with
a comparative case study.
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1. Proof of Log-Concavity
Proof of Theorem 2.

Proof. We can factor the pmf of � as follows:

p(�) = a(�)b(�)
Y

nk2n+

ck(�)e(�)
Y

nl2n�

dl(�)e(�)
�1

a(�) =
Y

pi2p+,qi2q+

pqi+�
i

(qi + �)!

b(�) =
Y

pj2p�,qj2q�

p
qj��
j

(qj � �)!

ck(�) =
(nk + �)!

(nk + � � yk)!

dl(�) =
(nl � �)!

(nl � � � yl)!

e(�) = (1� ↵)�

Where {p+, q+, n+} and {p�, q�, n�} represent the sub-
sets of p,q, and n which change positively and negatively
under z accordingly. Since the product of log concave func-
tions is also log concave, it is thus sufficient to demonstrate
that each of the factors of L(�) is log concave. Observe that
the inner part of a(�) is the form of e�Poisson�(k) where
� = pi and k = qi + �. Since the Poisson is log concave
and so is e�, a(�) is also log concave in �. By an identical
argument, so is b(�).

For e(�), note that log(1 � ↵)� = � log(1 � ↵), which
is linear in � and therefore e(�) is log concave in �, as is
e(�)�1.

The proof of concavity for ck(�) and dl(�) is below:

ck(�) =
(nk + �)!

(nk + � � yk)!

Let n0
= nk + �

ck(n
0
) =

n0
!

(n0 � yk)!

by construction, n0
= nk + � � yk

to show ck(n0
) is log concave, we must show:

ck(n
0
)

2 � ck(n
0 � 1)ck(n

0
+ 1)

ck(n0
)

ck(n0
+ 1)

� ck(n0 � 1)

ck(n0
)

n0
!

(n0 � yk)!

(n0
+ 1� yk)!

(n0
+ 1)!

� (n0 � 1)!

(n0 � 1� yk)!

(n0 � yk)!

n0
!

n0
+ 1� yk
n0

+ 1

� n0 � yk
n0

1� yk
n0

+ 1

� 1� yk
n0

Thus ck(n0
) and, by extension, ck(�) are log concave. A

similar argument shows that dl(�) is log concave as well.
Then we have shown that p(�) is a product of log concave
functions and therefore p(�) is also log concave.


